Tag Archives: Goddard Institute for Space Studies

Black Carbon's Day on the Hill

Posted on by .


Drew Shindell (left), Veerabhadran Ramanathan, and Tami Bond speak with Representative Edward Markey after the three scientists testified. Credit: NASA/Voiland

Leading aerosol scientists, including NASA’s Drew Shindell, explained the intricacies of a sooty component of smoke called black carbon to members of the Select Committee on Energy Independence and Global Warming during a hearing on Capitol Hill last month.

Their message: controlling black carbon emissions could be a win-win for both human health and the environment.

Not only can partially combusted particles of carbon lodge in the human respiratory system and cause disease, the panelists explained, they also contribute to climate change by warming the atmosphere and changing the way Earth reflects sunlight back into space.

Three lawmakers—Representative Edward Markey (D-Mass.), Representative Jay Inslee (D-Wash.), and Representative Emanuel Cleaver (D-Mo.)—questioned the scientists.

Tami Bond, a black carbon specialist from the University of Illinois, began the hearing by offering a summary of black carbon’s potent short-term climate impacts. She noted, for example, that:

•     One ounce of black carbon absorbs as much sunlight as would fall on an entire tennis court.

•     A pound of black carbon absorbs 650 times as much energy during its one-to-two week lifetime as one pound of carbon dioxide gas would absorb during 100 years.

•     An old diesel truck driving 20 miles would emit about one-third of an ounce of black carbon and 70 pounds of carbon dioxide. The carbon dioxide from that truck would have five times the warming power of the black carbon, but it would spread out over 100 years. The truck’s more potent black carbon impact would have an effect in the span of a few weeks.

Drew Shindell, a climate modeler from NASA’s Goddard Institute for Space Studies (GISS) in New York City, provided more details about where black carbon comes from and how much impact it has on Earth’s climate.

As seen in this scanning electron microscope still image, small chain-like aggregates of soot cling to larger sulfate aerosol particles.  Credit: Arizona State University/Peter Buseck

Diesel vehicles, agricultural burning and wildfires, and residential cooking stoves are key sources of black carbon. However, combustion that occurs at higher temperatures — such as the type that takes place in power plants — does not produce much of the substance.

Shindell said climate models from NASA GISS and elsewhere show that 15 to 55 percent of global warming is due to black carbon. The wide range is primarily because of incomplete knowledge about how black carbon and clouds interact.

One of the more interesting questions came from Rep. Inslee, who asked the scientists whether black carbon’s impact is due to the fact that it absorbs sunlight and warms the atmosphere, or because it covers snow and ice with dark soot, which reduces Earth’s albedo and makes the planet less reflective.

Veerabhadran Ramanathan , a professor at the Scripps Institution of Oceanography, responded: “The albedo effect contributes about 10 percent of the total black carbon effect. But if you look in the Arctic or in the alpine glaciers, then the darkening effect may be the dominant effect.”

Shindell added that the scientific understanding of black carbon’s impact varies by region. “In places like the Himalayas, the results are somewhat ambiguous,” said Shindell. Over Himalayan glaciers, large amounts of dust — which also absorb radiation — and other pollutants in the air may dampen the effect. “In the Arctic, which tends to be very far from dust sources, the snow is very clean, so the effect is extremely large.” Increasing levels of black carbon combined with decreasing levels of sulfates may account for more than half of the accelerated warming in the last few decades, Shindell’s research suggests. 

Inslee also expressed frustration about the lack of understanding of science and climate change among his fellow lawmakers.”If I was scientist and I knew what was going on out there, I’d be in somebody’s grill, telling them we need action,” he said. “And yet you just don’t see that from the scientific community….Why doesn’t that happen? Should it happen?”

 Drew Shindell testifies as Veerabhadran Ramanathan looks on.
Credit: Committee on Energy Independence and Global Warming

The scientific method and the culture of scientists, Bond replied, makes it very difficult for scientists to lobby lawmakers or advocate a policy position and remain credible. “This is a difficult question and has to do with the nature of scientists and how they approach science,” she said. “If you have an action outcome, one is almost afraid that you’ll affect the science because you’re supposed to look at it dispassionately. How we conduct our business, 99.9 percent of the time, we must step back from what we want the outcome to be. We’re not allowed to want an outcome.”

Adam Voiland, NASA’s Earth Science News Team

Have the Last Four Summers and Winters Felt Warmer?

Posted on by .


During a congressional hearing in 1988, Goddard Institute for Space Studies climatologist James Hansen predicted that a perceptive person would be able to notice the climate was changing by the early 21st century. Has his prediction panned out? He digs into the topic in a discussion published this week on his website.


The short answer: yes, depending on where you live, you should be able to tell that in the last four years, for example, summers have been warmer than average. The last four winters have also been noticeably mild in most parts of the world. (Though it’s worth noting that the last two winters in the continental United States have actually been cooler than average).

Read on below to see how Hansen explains it in more detail. (I’ve excerpted some of the more accessible sections of the text and two graphs, but the full discussion is available here as a pdf.)  More context and details about trends in the global surface temperature record are also available.

This past winter, for the second year in a row, seemed pretty extreme in both Europe and the United States. So this is a good time to check quantitatively how seasonal climate change is stacking up against expectations.

People’s perception of climate change may be the most important factor determining their willingness to accept the scientific conclusion that humans are causing global warming (or global climate disruption, as you please). Itis hard to persuade people that they have lying eyes.

In the paperattached to my congressional testimony in 1988 (1) we asserted that theperceptive person would notice that climate was changing by the early21st century. Now we can check the degree to which the real world has lived up to this expectation. The answer will vary from one place to another, so let’s make a global map for this past winter. Each gridbox will be colored red, white or blue, depending on how the local temperature this past winter compared with the categories established by the 1951-1980 climatology.

Figure 7 (above) shows the result for the last four winters (summers in the Southern Hemisphere). To make the maps even more useful we use dark blue and dark red to show those places in which the temperature fell in the extreme (>2 standard deviations) category that occurred only a few percent of the time in the period of climatology1. The extreme cases are important because those are the ones that have greatest practical implications, especially for nature. Species are adapted to climate of the past, so a change to more extreme climates can be detrimental, especially if it occurs so rapidly that species cannot migrate to stay within tolerable climatic conditions.

The numbers on the top of the maps are the percent of the area falling in the five categories: very cold, cold, normal, hot, very hot. In the period of climatology those numbers averaged 2%, 31%, 33%, 31%, 2%, rounded to the nearest percent.

Figure 7 reveals, for example, that the past two winters in Northern Europe both fell in the category of “cold” winters, but not extreme cold. The area hot or very hot (51-73%) far exceeded the area with cold or very cold conditions in all four years (14-27%).

Figure 8 (top) shows results for Jun-Jul-Aug for each of the past four years. In both Jun-Jul- Aug and Dec-Jan-Feb it is apparent that the area falling in either the hot or very hot category totals 64-78% in agreement with our 1988 climate simulations.

The perceptive person who is old enough should be able to recognize that the frequency of unusually mild winters is now much greater than it was in the period 1951-1980. But mild winters may not have much practical impact. So a return to one or two colder than average winters may affect the public’s perception of climate change.

On the other hand, the huge increase in the area with extremely hot summers, from 2-3% in 1951-1980 to as much as 30-40 percent in recent years and most of the land area in 2010. If people cannot recognize that summers are becoming more extreme they may need to have their senses examined or their memories. Perhaps the people who do not recognize climate change are living in air-conditioned environments, which are restricted mainly to one species.

–Adam Voiland, NASA’s Earth Science News Team

Are the Oceans Really Stuffed to the Gills with Carbon Dioxide?

Posted on by .

Two months ago, NASA’s Timothy Hall and colleagues published a study that described how they had estimated the amount of manmade carbon dioxide absorbed by the ocean since the start of the industrial era.

Oceans absorb about a third of the carbon dioxide that humans release into the atmosphere, so sorting out a long-term record of carbon uptake is of great interest to climate scientists.

To create their record of the ocean’s uptake of carbon, Hall and Samar Khatiwala, the lead author of the study, devised a clever mathematical technique that proved to be a considerable advance. When Hall’s study appeared in the journal Nature, he assumed the creation of this new long-term, continuous record would headline the news.

But journalists gravitated toward something else entirely: a brief mention that the amount of carbon dioxide absorbed by the ocean seemed to be experiencing, as the researchers put it, “a small decline in the rate of increase in the last few decades.”

“Seas Grow Less Effective at Absorbing Emissions”, one headline trumpeted. Another article compared the world’s oceans to a fish “stuffed to the gills” with carbon dioxide and another reported a “sudden and dramatic drop in the amount of carbon dioxide being absorbed by the sea.

Given the caveats included in the original study, all of this caught Hall slightly off guard. I’ll let Hall, who summarized his reactions to the coverage for What On Earth, pick the story up from here:

My coauthors and I had viewed the ability to estimate the history of ocean uptake of anthropogenic carbon as the highlight of the paper. Previously, observationally-based estimates had only provided a few snapshots in time, and we were proud of the cleverness of our techniques.

It seems clever mathematical techniques, however, don’t make good press releases. Interestingly, coverage of the paper has not focused on the fact that we can estimate the uptake history. Instead it has focused on apparent reductions in the rate of uptake over the last 2 decades.

The figure below shows our estimate of ocean uptake since 1775. The first impression is the rapid increase since 1950, coinciding with the rapid rise in carbon emissions to the atmosphere. The oceans have prevented about 1/3 of anthropogenic carbon emissions from accumulating in the atmosphere. A closer reading of the curve reveals a reduction in the uptake’s rate of increase after about 1980, even while emissions continue to increase.

Scientists have long suspected that ocean carbon uptake would eventually be unable to keep pace with rising emissions. Basic aqueous chemistry tells us that, as dissolved carbon in seawater increases, seawater becomes less able to absorb new carbon. Eventually, the absorption saturates. The slowing down of the increase rate may be an early signal of this saturation.

However, recent changes in uptake were not our focus when we performed the study, and more importantly we did not analyze the statistical significance of the slowdown. We plan further analysis on these trend variations. What we can say is that there are physical reasons to suspect a reduction in the ocean’s capacity to keep pace with increasing carbon emissions, and that there are now strong observational hints for recent reductions.

Hall advises reading this story, which also appeared in Nature. It’s less dramatic and more technical than most of media accounts, but it is a more accurate representation of the paper.

–Adam Voiland, NASA’s Earth Science News Team
   Image Credit: (EPOD/K. Chrisodoulopoulus)

How Do Global Soot Models Measure Up?

Posted on by .


A image from a simulation that shows the spread of black carbon aerosols in Asia. Areas where the air was thick with
the pollution particles are white, while lower concentrations are transparent purple. (Credit:
Earth Observatory)

As NASA atmospheric scientist Eric Wilcox recently told Time magazine, emerging evidence suggests that a short-lived type of air pollution called black carbon—known popularly as soot—can exacerbate global warming by absorbing incoming solar radiation.

Yet pinning down precisely how much the black carbon exacerbates warming is no easy task, research conducted by Goddard Institute for Space Studies climatologist Dorothy Koch suggests. The study, published in Atmospheric Chemistry and Physics tracked how the predictions from 17 global black carbon models compared with actual measurements collected by airplane, satellite, and ground-based sensors. It shows, among other things, that models generally underestimate black carbon’s warming effect on climate.

Koch tested all the models in three ways. In the simplest of the three, she compared the models’ predictions to the amount of black carbon measured at the surface, finding that they matched real life reasonably well.

Her second test compared the models’ predictions to black carbon measurements made higher in the atmosphere using airplanes, and the results were much less clear cut. Though the models usually had too much black carbon over pollution sources, most had too little over remote regions such as the Arctic.

Koch’s final and most important test looked at how much solar radiation black carbon actually absorbs, an indicator of the amount of warming the particles actually produce. Again, the results were mixed. The models were largely accurate over North America and Europe, but were not for areas that have high levels of black carbon such as Central Africa, Southeast Asia, and the Amazon.

In a write-up on the Goddard Institute for Space Studies web site, Koch summarizes her findings this way:

We concluded from this study that most models have enough black carbon at ground level in polluted regions, too much in the atmosphere above source regions, but not enough in the Arctic where black carbon may play an important role in contributing to Arctic warming and ice/snow melt. The models’ soot generally does not absorb enough sunlight and therefore these models would underestimate black carbon heating effects. This probably results from underestimating the absorbing properties of the particles rather than the amount (mass) of black carbon.

Wondering how climate modelers can continue to close the gap between model predictions and reality? Koch put forward some advice on how to fine-tune the next generation of aerosols models. Her top three:

1) Account for mixing between black carbon and other components of the atmosphere,
2) Incorporate better measurements of particle size and source amount in some regions.
3) Continue to mine ongoing satellite and field campaigns for data about black carbon.

You can read more GISS science briefs and NASA news stories about black carbon here, here, and here.

–Adam Voiland, NASA’s Earth Science News Team