From: Kevin Arrigo, Stanford University
Despite my son Matthew’s assertion to the contrary, I’m NOT old enough to have been around during the time of the cavemen and so I don’t have a clear idea of what kind of tools they might have used. Still, even though I wasn’t actually there, all available evidence points to the obvious conclusion that cavemen tools were primitive compared to those used by their descendants. In fact, the increasing sophistication of our tools has played a large part in the development of our modern culture. Sure, our tools simplify our everyday lives, but they do much more than that. They make the impossible possible. If you don’t believe me, just think of all the tasks you perform each day and how many of them would not be possible without the right tool.
In science, the need for the right tools is so acute that it has spurred a cottage industry of entrepreneurial individuals and small firms whose mission it is to build the right widget for virtually any scientific task. This synergy between scientist and tool builder (who are occasionally the same person) has led to major advances in virtually every scientific field. ICESCAPE is not only benefiting from its use of a wide variety of sophisticated tools, but also helping to improve tools already in use.
Although we have a dizzying array of scientific instruments at our disposal, the ones that are of particular importance to the ICESCAPE mission are those that allow us to collect and evaluate measurements in near real-time. If all we could do was collect samples that couldn’t be analyzed until we got back home, we would never be able to recognize, let alone respond to, exciting new observations. It would be like navigating a dark deserted street without the benefit of GPS. Or a map. Or even street signs. Fortunately, a number of our scientific tools allow us to obtain, virtually instantly, intimate glimpses of the physical and chemical properties of the Arctic Ocean and how the biology is responding to these properties. For instance …
Before the ICESCAPE team left for the Arctic, Gert van Dijken (Stanford University) and Mati Kahru (Scripps Institution of Oceanography) produced satellite images of sea ice cover and surface chlorophyll (an indicator of the abundance of phytoplankton – those small single-celled floating plants at the base of the marine food web) for our study region to help guide our sampling plan. These satellite images are free to the public, available every day, and cover the entire Earth surface (OK, clouds can be a problem, but we can usually get enough clear images, even in the Arctic, to suit our needs). Without these images, we would have been forced to make educated guesses at where we should target our sampling.
Once we’re on board the ship and have identified a promising piece of real estate, Melissa Miller and Susan Becker (Scripps) use a nutrient autoanalyzer to very quickly tell us how much nitrogen, phosphorus, and silicate (an element used by some phytoplankton to build their beautiful glass shells) exists at different depths in the water. Just like the plants in your garden, phytoplankton require these nutrients to grow, and measuring their concentrations provides us with instant information about ecosystem health.
Then Sam Laney and Emily Peacock (Woods Hole Oceanographic Institution) swing into action. They use their Imaging FlowCytobot (no matter how many times I say it or read it, it is still the coolest name for an instrument ever!) to both count and identify individual microbes that inhabit the seawater and sea ice we are sampling. Soon after, Matt Mills and Molly Palmer (Stanford University) put these microbes into a FRRF (Fast Repetition Rate Fluorometer) to see how active and healthy they are.
We then use the CTD (which stands for conductivity, temperature, and depth) and an ADCP (Acoustic Doppler Current Profiler) to tell us which direction the water is moving and how cold and salty it is. This information is essential for interpreting the distributions of nutrients and phytoplankton we observe. Amazingly (to me at least), Bob Pickart and Frank Bahr (Woods Hole Oceanographic Institution) can give us this vital information within minutes of the time that the data are collected.
Tools such as these provide rapid, yet accurate, assessments of ecosystem state and greatly improve our ability to carry out our science. And while these tools are a great help to us, the pendulum swings both ways. Work we are doing during ICESCAPE will markedly improve the quality of some of these tools so that they are of even greater benefit to future scientific expeditions. The most obvious example of this is the work being done by ICESCAPE’s optics team. Interpreting satellite images of sea ice and ocean color depends on our understanding of how radiation interacts with the ice and ocean surface. Because of its unique geography and chemistry, the Arctic Ocean poses a particular challenge to optical oceanographers. Stan Hooker (NASA Goddard Space Flight Center), Atsushi Matsuoka (Villefranche), Greg Mitchell, Rick Reynolds, and Dariusz Stramski (all three from the Scripps) are using a variety of optical approaches to unlock some of the mysteries of the Arctic Ocean. When their work is completed, our ability to interpret satellite imagery will undoubtedly be greatly improved, to the benefit of all.
Success in science, like many other endeavors, relies on using the right tool for the right job. And while our scientific imagination and creativity can carry us a long way, our scientific instruments allow us to collect and interpret data with unprecedented speed and reliability. As romantic as the old days of the Secchi disk (look it up) and mercury thermometer may be, give me today’s Imaging FlowCytobot any day!
Scientists use this nutrient autoanalyzer to discover the concentration of nutrients in water samples. The pink color in the tubes here is a water sample with a high concentration of nitrate reacting with introduced chemicals. (Photo by Haley Smith Kingsland)
The Imaging FloCytobot takes pictures of tiny phytoplankton for scientists to learn more about them and their ecosystem. (Photo by Haley Smith Kingsland)
The ADCP measures the speed at which the water moves. The four separate transducers lie underneath the hull of the ship. (Photo by Dale Chayes)
this is awsm…. really fascinating…. thnks 4 al t info…. im very much interested in environment relatd topics n i help in spreadin awareness abt it…. do send me mail if i cn b of ur use in any way….
What is wrong with the Healy this mission? A person cannot access the aloftcam from the Healy’s website. The only way is to utilize the site which you gave below. Also, when I looked at the pic, after following the icescape, not USCG site, I noted that the temperature is, ready for this, NEGATIVE 252 degrees Fahrenheit. A cynic might wonder if the reported temperature would indicate global cooling.