People of PACE: Jeremy Werdell is the PACE Mission Scientific Conscience

Jeremy Werdell is the project scientist for the PACE mission as well as a biological oceanographer in the Ocean Ecology Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

What is your favorite ocean- or atmosphere-related book or movie?

“Jaws!” And it’s not close. “Jaws.” Best movie, without question, ever made.

What are you most looking forward to on the night of launch?

The operation of the spacecraft and instruments. I am going to be an absolute nervous wreck the entire time and it won’t be until systems engineering and project management tell me that everything is okay and that the fun is now going to begin that I will finally breathe easy. So, yeah, the transition from “holy crap” to “it’s all working!”

A man stands on the right side of the image seen from the shoulders up. He is wearing a white clean suite that covers over his head and forehead as well as a white mask that covers his nose and mouth. Behind him and to the left in the image is a spacecraft, PACE. Several parts of the spacecraft are covered in a silver-colored foil-like material. The room that the man and the spacecraft are in has very large ceilings which are seen in the background of the selfie.
Jeremy Werdell wearing in a “bunny suit” or cleanroom suit to get up close and personal with the PACE observatory. Credit: Jeremy Werdell/NASA

What are you most looking forward to after the night of launch?

Watching the energy emerge within and across our communities. I’m enjoying taking on the role of making sure the mission is as good as it can be so that it’s something our community can grow into. It is a gift from NASA and the government and community that preceded me to this next generation of scientists that can and will do something amazing.

The Ocean Color Intrument (OCI) on PACE is going to to show us colors of the ocean in a hyperspectral range, which is like using a box of 256 crayons instead of the previous boxes of 8 colored crayons. So, of all the colors in the large crayon box, what is your favorite color and why?

Green, and specifically the wavelength 532 nanometers. That exact green, for two reasons: One, for some weird reason, my family, including my wife, all jibe with green. Two, when I first started a master’s degree at the University of Connecticut, I was learning how to use a spectrophotometer and my advisor, Collin, pointed out a green beam within it and said “532 nanometers, it’s a beautiful color.” That has always stuck with me.

A man wearing a black hoodie takes a selfie. In front of him is a loaf of light tan, freshly baked bread, which takes up the entire length of the image, left to right. The bread is resting on a cooling rack.
Jeremy’s latest loaf of bread, fresh from the oven. Credit: Jeremy Werdell

What’s a fun fact about yourself that not a lot of people might know about you?

I tell almost anybody who will listen that I’d rather be a professional chef than a scientist. In fact, I even have a chef’s knife tattoo now.

I’ll cook anything. I use cooking as therapy – my mental health improves by just standing in the kitchen after work. My wife and I started cooking as a couple when we first had kids because we weren’t leaving the house as often.  But, eventually I kind of just elbowed everybody else out of the kitchen and spent most of my time there.

What is some advice that you would give to aspiring scientists that are looking to be where you are today?

Three things. The one thing that I think got me to where I am within Goddard was the opportunity when I was early in my career to spend a lot of time writing papers and interacting with the science community, including organizing workshops. I had a lot of latitude to get out and about, above and beyond my day-to-day activities.  I found that writing and external engagements to be very good ways to get the community to know me.

A man stands in the image upon a stage. The black stage takes up a majority of the bottom half of the image. The man holds a microphone and is looking to the right in the image, out to the audience. Behind him to the right is a bright red curtain, and to the left is a projected image of a presentation, which is on a slide that is mostly blue and purple in color.
Werdell presenting PACE and NASA Earth Science at Nerd Nite in San Francisco several weeks ago. Credit: Jennifer Werdell

The second thing, which I tell any early career scientist that will listen, is to serve on as many research panels for NASA headquarters as you can. It’s very empowering to sit on the other side of the table and digest the evaluation side of the process. What you learn from doing this really improves the quality of the proposals that you write and, whether anyone likes it or not, being successful in “proposal land” does have its advantages in terms of career advancement.

Third, public speaking. Spend as much time getting out of your comfort zone and talking to anybody who will listen in front of any stage. I can’t stress this enough. Start when you’re in high school. I know most kids hate standing in front of the audience, but you will be so much better at what you do if you can do this. Even if you’re not good at it, don’t fret, just keep at it and find some comfort with it. Eventually the quality will come.

What is one catch-all statement that you would say describing the importance of PACE?

All citizens of the Earth should realize everything is connected: land, ocean, and atmosphere. PACE is NASA’s next great investment in the combined studies of all these aspects of the Earth’s system. With its capabilities, there’s so much scientific growth that will be accomplished, which makes PACE incredibly important to how we understand what we’re doing to our home planet.

A man wearing a blue T-shirt with a spaceship printed on it, takes a selfie, taking up the right side of the image. He is sitting at a table at a restaurant with a plate of food in front of him. In the background of the image is a white boat with one man sitting on it. It is floating in a harbor, the water calm and blue.
Jeremy took a quiet moment with all of his favorite things – food, water, sunshine. Credit: Jeremy Werdell

Header image caption: Enjoying the PACE scale model on display at SRON in the Netherlands. Credit: Jeremy Werdell/NASA

By Erica McNamee, Science Writer at NASA’s Goddard Space Flight Center

People of PACE: Otto Hasekamp Helps Scientists See Light in a New Light

Otto Hasekamp is a senior scientist at the Netherlands Institute for Space Research (SRON) and is the science lead for the SPEXOne polarimeter that will be on PACE.

What is your favorite atmospheric or oceanic related book or movie?

It’s not a book, but my favorite bit of writing about the atmosphere is actually a review article from 1974 – the year I was born! – on light scattering by atmospheric particles. It’s something that I’ve come back to through my whole career. It was written by Jim Hansen and Larry Travis from NASA’s Goddard Institute for Space Studies in New York, and is sort of the cornerstone for polarimetry.

What are you most looking forward to during launch?

I’m really excited to see the satellite go up and then get the notification that everything has gone right with the satellite. It will really be a relief, and I’m looking forward to that green light.

What are you most looking forward to post-launch?

The commissioning phase where we check all the measurements and the instrument will be an exciting and intense period. I’m really looking forward to the first measurements of SPEXOne. On the somewhat longer term I look forward for our team to first real science results, that improve our understanding of aerosols and clouds.

What is your favorite color and why?

My favorite color is blue. Why? Well, of course when the sky is really clear it shows up very blue and I think that’s a great thing to look at.

A man stands centered in the image and can be seen from the waist up. He is wearing a black winter coat. Behind him, also centered in the image, is a large wooden pole. There are wires coming off of the pole. In the background of the image, the sky is bright blue, but is covered by some white fluffy clouds. Near the bottom of the image in the background, a mountainous green landscape can be seen far below where the man is standing.
Otto Hasekamp at the Berger Kogel, Austria, September 2023. Courtesy of Otto Hasekamp

Do you have a favorite type of cloud or atmospheric phenomenon?

The very, very thick clouds when there’s a thunderstorm coming that are sort of scary to see. It gives a special atmosphere.

What’s a fun fact about yourself, something that people might not know about you?

I like hiking in the mountains. Every year, for 25 years, I go hiking in the mountains with friends of mine and we hope to continue to do that for a long time. I’ve also crossed the Arctic Circle.

What advice would you give to aspiring scientists who are looking to get to where you are today?

Persist. Accept that things go slowly but persist and you will get where you want to be. I think that is maybe the most important one. Keep in mind the impacts of what you do, that’s another important one.

What is one catch-all statement describing the importance of SPEXOne?

It will help the understanding of the cooling effect that fine particulate matter has on the climate.

Header image caption: Otto Hasekamp presenting SPEXone at the International Astronautical Congress (IAC) conference, Washington, D.C., October 2019. Courtesy of Otto Hasekamp

By Erica McNamee, Science Writer at NASA’s Goddard Space Flight Center

People of PACE: Kirk Knobelspiesse Keeps His Eyes on the Skies

Kirk Knobelspiesse is an atmospheric scientist and the project science team polarimeter lead for PACE at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. He is also the polarimeter instrument scientist for the Atmosphere Observing System (AOS) constellation.

A man stands centered in the image standing straight with his arms held out on either side of him. He is standing on a tan sand dune. The sky behind him is a light blue and gray color.
Kirk Knobelspiesse hiking sand dunes near Swakopmund, Namibia, during the ORACLEs field campaign. Image Credit: Michal Segal-Rozenhaimer

What is your favorite atmospheric or ocean related book or movie?

There was a series on Netflix called “Connected” that had an episode called “Dust.” The general idea is that everything in the world is connected, so it started with dust that was generated in the Sahara Desert, specifically the Bodélé Depression. And that dust – which is really from a dry lakebed – gets lofted into the atmosphere and goes out over the oceans, and in the process interacts with clouds and potentially fertilizes the ocean. That dust makes it all the way to the Amazon basin where it may also be an important source of nutrients.

What is your background?

I am a photographer who got really into imaging of all kinds, which led me to remote sensing. I ended up doing work on remote sensing of Earth from space and worked on SeaWiFs, which was an early ocean color mission. I decided I need to go back to grad school and get a more quantitative education, so I got an applied math degree at Columbia University.

What are you most looking forward to during launch?

Earlier in my career I worked on a satellite that had a launch failure (Glory in 2011). So, during launch, I am going to shut myself in a closet and not learn any news until somebody tells me it’s all over. Because it makes me so nervous. A lot of people want to go and see the launch and that kind of thing. Not me, I’m going to stay away. Somebody will tell me when it’s all over.

What are you most looking forward to post-launch?

A man is sitting at a desk in an office. He is facing the camera and appears to be taking a selfie. He takes up the right side of the image. The left side of the image shows a computer screen and a water bottle, which the man is holding. In the background, the office door, a coat rack, and part of a whiteboard can be seen.
Kirk Knobelspiesse in his office at NASA’s Goddard Space Flight Center in Greenbelt, Md. Image Credit: Kirk Knobelspiesse

I have a list of all the Science and Nature papers we’re hoping to write with PACE data. It’s ambitious, a little bit. But there are new types of observations that we will be making, that no other satellite will have done so far, at least not at a global scale. One aspect I’m interested in is just exploring the data, looking for basic things that will be useful for our understanding of aerosols and clouds and the climate in general.

I have some pet projects that I’ve always been interested in, for example a specific situation when aerosols are lofted above clouds. Aerosols are generally something that cools the climate because they reflect light. But if you have, say, a dark smoke aerosol on top of the cloud, it actually warms the climate, because it absorbs some of the energy that would have otherwise been reflected into space. So that’s something we’ll be able to do with PACE that we don’t really have great observations of now.

What is your favorite color and why?

I have a 10-year-old daughter, and favorite colors are very important to her and her friends. They’re always asking me what my favorite color is, and I say I can never answer them because how can you like one color without liking all the others?

Do you have a favorite type of cloud or weird atmospheric phenomena?

There’s also an optical phenomenon called glory. If you’re floating above a cloud and the Sun is behind, you look down at your shadow and you will see your shadow with a glory around it, which is like a circular rainbow around yourself. That’s one of my favorite optical phenomena.

What’s a fun fact about yourself? Something that a lot of people might not know about you?

A man takes up the left side of the image. He is walking towards the camera. He wears a neon yellow vest and is holding onto a large, green gas canister, which is rolling behind him. In the background of the image, a large plane sits on a runway with the nose of the plane facing the left of the image and the tail of the plane, featuring a NASA logo, on the right side. The plane has a stairway connected to the door.
Kirk Knobelspiesse working on the NASA P-3 during the ORACLES field campaign in São Tomé, São Tomé and Príncipe. Image Credit: Andrzej Wasilewski

I’ve been to latitude zero, longitude zero, the point in the South Atlantic Ocean where the equator and prime meridian intersect. It was part of the ORACLES field campaign. There’s nothing special there. It’s just ocean – and I don’t mean to offend my oceanographer friends by saying it’s nothing special – but there was no pillar of fire or something like that.

What advice would you give to aspiring scientists looking to get where you are today?

Don’t pigeonhole yourself into one discipline or one topic of study. Not just computer science or physics or oceanography. They’re human constructs, sociological constructs, and they don’t have anything to do with nature, other than how we have organized ourselves. A lot of where I’ve found interesting and productive things to do have been at the boundary between disciplines, or learning from one discipline and applying that approach to another discipline. So, don’t tell yourself, “I can’t do something because I’m not trained to do that.” You can learn and you can train yourself, and don’t be afraid to go out on a limb and do something you don’t really know how to do.

What is one catch-all statement describing the importance of PACE?

We will be making use of things that people cannot see – the nature of light – to understand things that we can’t otherwise observe.

Header image caption: Kirk Knobelspiesse hiking at Rachel Carson Conservation Park in Brookeville, Md. Image Credit: Barbara Balestra 

By Erica McNamee, Science Writer at NASA’s Goddard Space Flight Center

The Journey of a Carbon Atom: From Space, NASA’s PACE Mission Detects Carbon in the Sky, Land, and Sea

Whether in plants or animals, greenhouse gases or smoke, carbon atoms exist in various compounds as they move through a multitude of pathways within Earth’s system. That’s why NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission – scheduled to launch in January 2024 – was designed to peer down at Earth from space to see those many forms of carbon in a way no other satellite has done before by measuring colors not yet seen from the vantage point of space.

“PACE is standing on the shoulders of some giants, but previous and current satellites are limited in how many colors of the rainbow they can actually see,” said Jeremy Werdell, project scientist for the PACE mission at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Although one of the primary goals of the mission is to measure the colors on the ocean surface, in the 420 miles (676.5 kilometers) between PACE in orbit and sea level are parts of the complex carbon web that the satellite will also be able to monitor.

The connection between major wildfires and the subsequent explosion of phytoplankton production is an example of the events NASA’s upcoming Plankton, Aerosols, Clouds, and ocean Ecosystem (PACE) mission will help investigate. PACE’s suite of instruments will allow scientists to get a clearer picture of carbon as it links land use and fires, atmospheric aerosols and marine communities. Credit: NASA’s Goddard Space Flight Center

Atmosphere

From PACE’s location in space, one of the nearest forms of carbon to detect could be the wispy plumes of smoke and ash rising into the atmosphere from fires. Carbon is a key building block of much life on Earth, including plant life. When burned, the vegetation’s carbon-based molecules transform into other compounds, some of which end up as ash in these plumes.

The instruments on PACE will be able to monitor these smoky clouds, as well as other atmospheric aerosol particles, measuring their characteristics including the relative amount of smoke in different places. Combinations of these measurements made by PACE’s two companion polarimeter instruments, SPEXone and the Hyper-Angular Rainbow Polarimeter-2 (HARP2), and the detailed color measurements of the smoke made by the Ocean Color Instrument (OCI) will also help scientists identify what was burnt.

“Each instrument brings something different,” said Andy Sayer, PACE’s project science lead for atmospheres at NASA Goddard. “Putting them all together though, you’re getting the most information.” Sayer is also a senior research scientist for the University of Maryland Baltimore County.

These measurements help scientists understand more about the balance between the incoming energy from the Sun, the outgoing energy from Earth, and where it may be absorbed in between by things in the atmosphere like these smoke plumes. Even at a local level, PACE can provide information about how smoke affects air quality, impacting communities that may be near fires.

Land

Peering through the smoke particles and other aerosols, PACE can also tell us about the health of terrestrial plants and trees. Even after a devastating wildfire, fresh green plant life begins to grow and thrive. With more spectral bands and colors to see from the upcoming satellite, scientists will be able to understand what kinds of plants are recovering from fires over the years.

“In a time where we’re experiencing unprecedented climate change, we need to be able to understand how global vegetation responds to its environment,” said Fred Huemmrich, research associate professor at the University of Maryland, Baltimore County, and a member of the PACE science and applications team.

PACE will be able to monitor the different shades of colors in vegetation, and plant color can be an indicator of health. Just as house plants begin to fade to yellow if they haven’t been watered enough, plant life around the globe changes color as it experiences stress. Healthy plants take up carbon in the form of carbon dioxide as part of photosynthesis, while unhealthy plants that can’t complete photosynthesis leave the carbon dioxide roaming around the atmosphere. Given that carbon dioxide is a greenhouse gas, these measurements also play a significant role in understanding climate change in greater detail.

By measuring a full spectrum of color, PACE will view tiny changes in pigment to detect how plants are responding to stressors, helping scientists learn whether they are utilizing the surrounding carbon or not. Previously, these colors were primarily viewed in field studies of specific areas. Stressors like droughts were inferred using weather data, but covering large expanses was difficult.

“For the first time, we’ll really be able to look at changes in the health of plants over the globe,” Huemmrich said. “It will dramatically improve our understanding of how ecosystems function and how they respond to stress.”

Ocean

From plants on land to organisms in the ocean, PACE will view the expanses of water on Earth to measure phytoplankton – the P in its name. With its ability to measure a wide spectrum of colors, PACE will now not only be able to see more across the surface of the ocean but will also help scientists differentiate between phytoplankton species.

“It’s like you were making a painting with really coarse brushes, and now you have thin, fine brushes that help explain so much more in greater detail,” said Ivona Cetinić, an oceanographer in the Ocean Ecology Lab at NASA Goddard.

Phytoplankton, small organisms that live on the surface of the ocean, play a critical role in the food chain and the global carbon cycle. Each type of phytoplankton provides a different pathway in that expansive web of routes that carbon can take, all depending on the characteristics of the plankton. One pathway may lead to the carbon becoming food for a larger species, while another may lead to carbon becoming waste, sinking deeper into the ocean.

Scientists conducting field work have found that types of phytoplankton vary slightly in color and have identified these phytoplankton on small scales. PACE’s ability to measure a full spectrum of color will help scientists tell the difference between phytoplankton on a global scale by seeing more of these colors, deepening the understanding of carbon pathways and quantities.

Though one of PACE’s key goals is to view the ocean, its line of sight looks over the atmosphere and land as well. With these expansive observations, and the massive quantities of data collected, PACE provides the ability to see in what ways the atmosphere, land, and ocean are connected, including with the complex web of carbon pathways. 

“I’m energized for this opportunity for discovery that this observatory is offering,” Werdell said. “I have every expectation the world is going to do great things with these data.”

By Erica McNamee, Science Writer at NASA’s Goddard Space Flight Center