NASA’s Starling Commissioning Begins, Team Works to Bolster Comms

Each of NASA’s four Starling spacecraft stabilized themselves, deployed solar panels, and made initial contact shortly after their July 17 launch. Starling operators report nominal health for all the CubeSats.

The spacecraft are undergoing a series of preparation and testing activities, called commissioning, ahead of their mission to demonstrate autonomous communications, positioning, maneuvering, and decision-making capabilities. Starling’s commissioning phase includes three stages: spacecraft bus commissioning, payload commissioning, and propulsion system commissioning.

Three of Starling’s four CubeSats have completed spacecraft bus commissioning ahead of schedule. As of July 21, the mission team continues working to establish robust two-way communications with the fourth spacecraft so that it can join its fellow CubeSats in the next stage of commissioning. 

Follow Starling updates here and on the NASA Ames homepage, and stay connected with the mission on social media.

Twitter: @NASAAmes@NASA
Facebook: NASA AmesNASA
Instagram: @NASAAmes, @NASA

Starling is funded by NASA’s Small Spacecraft Technology program based at NASA’s Ames Research Center in California’s Silicon Valley and within the agency’s Space Technology Mission Directorate in Washington.

Starling CubeSats Have Deployed

NASA’s four Starling CubeSats are confirmed to have deployed from the Rocket Lab’s Electron kick stage. The spacecraft, which are designed to work together as a “swarm,” have reached low Earth orbit to begin their mission to test technologies for autonomous positioning, networking, maneuvering, and decision-making.

Now, the Starling swarm will power up and attempt initial contact with the ground; a process that may occur overnight or in the next several days.

For updates, follow us on social media:  

Twitter: @NASAAmes@NASA
Facebook: NASA AmesNASA
Instagram: @NASAAmes, @NASA

Starling is funded by NASA’s Small Spacecraft Technology program based at NASA’s Ames Research Center in California’s Silicon Valley and within the agency’s Space Technology Mission Directorate in Washington.

Starling: We Have Liftoff!

NASA’s Starling mission, has lifted off from the launch pad aboard Rocket Lab’s Electron rocket. The four CubeSats are on their way to low Earth orbit to test new autonomous spacecraft swarm technologies.

Rocket Lab is providing a live launch broadcast, available on the company’s website.

Connect with us on social media for ongoing launch updates:

Twitter: @NASAAmes@NASA@RocketLab
Facebook: NASA AmesNASARocketLabUSA
Instagram: @NASAAmes, @NASA, @RocketLabUSA

Starling is funded by NASA’s Small Spacecraft Technology program based at NASA’s Ames Research Center in California’s Silicon Valley and within the agency’s Space Technology Mission Directorate in Washington.

It’s Launch Day for NASA’s Starling Mission!

Welcome to launch day for NASA’s Starling CubeSat mission! A team of four satellites wait atop a Rocket Lab Electron rocket for liftoff from Launch Complex 1 in Māhia, New Zealand. This launch, named Baby Come Back, will send Starling’s cereal box-sized satellites, called CubeSats, to low Earth orbit, where they will test new autonomous spacecraft swarm technologies.

A two-hour launch window opens at 7:30 p.m. EDT (11:30 a.m. Tuesday, July 18, New Zealand Standard Time). Rocket Lab is providing a live launch broadcast, available on the company’s website approximately 20 minutes before launch.

Today’s launch aims to deploy the four Starling CubeSats more than 300 miles above Earth. Following commissioning, the spacecraft will demonstrate maneuver planning, communications networking, relative navigation, and autonomous coordinated science measurements, all with minimal intervention from operators on the ground.

This ambitious test is an important step in advancing self-coordinating robotic swarms for future science and exploration missions to the Moon, Mars, and deep space.  Projects like the upcoming HelioSwarm mission, which will launch nine spacecraft to study the Sun like never before, will benefit from lessons learned from Starling.

Here’s a look at some of today’s upcoming milestones. All times are approximate:

  • -00:02:00 Launch autosequence begins
  • -00:00:02 Rutherford engines ignite
  • 00:00:00 Lift-off
  • 00:01:00 Vehicle Supersonic
  • 00:01:11 Max-Q
  • +00:02:24 Main Engine Cut Off (MECO) on Electron’s first stage
  • +00:02:27 Stage 1 separates from Stage 2
  • +00:02:31 Electron’s Stage 2 Rutherford engine ignites
  • +00:03:03 Fairing separation
  • +00:04:07 Stage 1 apogee
  • +00:07:23 Stage 1 drogue parachute deployment
  • +00:07:38 Stage 1 is subsonic
  • +00:08:13 Stage 1 main parachute deployment
  • +00:08:59 Second Engine Cut Off (SECO) on Stage 2
  • +00:09:09 Stage 2 separation from Kick Stage
  • +00:15:15- +00:17:43- Splashdown predicted to occur between
  • +00:46:27 Kick Stage Curie engine ignition (1)
  • +00:48:39 Curie engine Cut Off (1)
  • +00:49:14 NASA Starling 1 Deploys
  • +00:49:44 NASA Starling 2 Deploys
  • +00:50:14 NASA Starling 3 Deploys
  • +00:50:44 NASA Starling 4 Deploys

Follow launch updates on this blog and stay connected with the mission on social media:

Twitter: @NASAAmes@NASA@RocketLab
Facebook: NASA AmesNASARocketLabUSA
Instagram: @NASAAmes, @NASA, @RocketLabUSA

Ames leads the Starling project. NASA’s Small Spacecraft Technology program, based at Ames and within NASA’s Space Technology Mission Directorate (STMD), funds and manages the Starling mission. Blue Canyon Technologies designed and manufactured the spacecraft buses and is providing mission operations support. Rocket Lab USA, Inc. provides launch and integration services. Partners supporting Starling’s payload experiments include Stanford University’s Space Rendezvous Lab in Stanford, California, Emergent Space Technologies of Laurel, Maryland, CesiumAstro of Austin, Texas, L3Harris Technologies, Inc., of Melbourne, Florida, and Ames – with funding support by NASA’s Game Changing Development program within STMD.