NASA, Universities to Study Earth’s Soil, Use New Technology in Orbit

Image shows Arizona State University student Marco Lalonde stows the DORA solar panels in preparation for flight
Arizona State University student Marco Lalonde stows the DORA solar panels in preparation for flight. Photo credit: Danny Jacobs

NASA’s CubeSat Launch Initiative soon will send two CubeSats to the International Space Station as cargo on the 21st Northrop Grumman commercial resupply mission.

CySat-1, designed and built by students from Iowa State University, measures Earth’s soil moisture content from low Earth orbit. The measurements will be taken with a software-defined radiometer, a system that uses software to process analog radio signals. Students will create computer programs to analyze those signals to determine levels of moisture in the soil present on the Earth. As Iowa State University’s first CubeSat, CySat-1 will be a technology demonstrator for future CubeSat missions.

Students at Arizona State University and NASA’s Jet Propulsion Laboratory (JPL) in Southern California developed DORA (Deployable Optical Receiver Aperture), a new technology CubeSat.

In the past, small satellites required precision pointing and only achieved low data transmissions in gathering information. The technology will demonstrate new optical communications without precision pointing and use a solid-state photon detector to gather high data rates using wide-field optical receivers. To test the detector’s performance, DORA will measure the background light from reflected sunlight, moonlight, and city lights when deployed from the space station into low Earth orbit.

The two demonstrations, CySat-1 and DORA, are both 3U CubeSats, a class of small satellites. The cube-shaped spacecraft are sized in standardized units, or Us, typically up to 12U. One CubeSat unit is defined as a volume of about 10x10x10 cm in size and typically weighs less than 2 kilograms.

The satellites will be released from the International Space Station using the Nanoracks CubeSat Deployer. One of the space station’s arms grabs and points the deployer in the proper direction to release the CubeSats into orbit.

Launch of the Cygnus spacecraft is targeted at 11:28 a.m. EDT Saturday, Aug. 3, on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.

TROPICS Mission Update

After a nominal first stage flight, the upper stage of the rocket shut down early and failed to deliver the TROPICS CubeSats to orbit.

NASA’s Launch Services Program, who managed the launch service for the mission, continues to work with emerging launch providers to deliver low-cost science missions into orbit through contracts that align with commercial practices, using less NASA oversight to achieve lower launch costs.

Small satellites and Class D payloads tolerate relatively high risk and serve as an ideal platform for technical and architecture innovation, contributing to NASA’s science research and technology development. The program offers opportunity for industry developing new launch capabilities.

 

Liftoff!

Two TROPICS CubeSats have lifted off atop an Astra Rocket 3 from Space Launch Complex 46 at Cape Canaveral Space Force Station in Florida today, June 12, 2022. Launch occurred at approximately 1:43 p.m. EDT.

Launch Countdown Paused

Astra has paused the countdown of the launch of its Rocket 3, carrying two of NASA’s TROPICS CubeSats, to complete final liquid oxygen conditioning on the vehicle. Upon completion, the team will set a new launch time for TROPICS-1.

Mission Facts About TROPICS

TROP:ICS constellation of CubeSats
Three pairs of satellites comprise the TROPICS constellation and will work in concert to provide microwave observations of storms on Earth, measuring precipitation, temperature, and humidity of a storm as often as every 50 minutes. Image Credit: NASA

Each TROPICS satellite is identical – a 3U CubeSat about the size of a loaf of bread and weighing about 12 lbs.

 

The TROPICS CubeSat payload is a spinning microwave radiometer with highly integrated, compact microwave receiver electronics.

 

TROPICS satellite measures microwave frequencies ranging from about 90 to 205 gigahertz, which can monitor the atmospheric emissions made by water vapor, oxygen, and clouds in the atmosphere.

 

TROPICS target altitude is 550 kilometers, and pairs of CubeSats will have three slightly different low-Earth orbits, all at an angle about 30 degrees above the equator.

 

The TROPICS Pathfinder satellite, a proof-of-concept CubeSat that launched in June of 2021, has captured images of several tropical cyclones, such as Hurricane Ida over the United States, Cyclone Batsirai over Madagascar, and Super Typhoon Mindulle over eastern Japan. The pathfinder satellite has also provided the TROPICS research team an opportunity to fine tune the satellites’ software and operational procedures before the constellation launches. In addition, the pathfinder has already been calibrated and will be able to serve as a calibration reference for the rest of the TROPICS constellation satellites. The TROPICS pathfinder helps the TROPICS CubeSats start producing useful data quickly. 

 

Astra’s Rocket 3 is an expendable, vertically-launched two stage rocket that uses liquid oxygen and kerosene as propellants. It has an overall length of 43 feet and is 52 inches in diameter. Astra designed it to fit inside a standard shipping container. Rocket 3 has five engines on its first stage, and one engine on its second stage.

 

TROPICS is an Earth venture instrument mission – science-driven, competitively selected, low-cost missions that provide opportunity for investment in innovative Earth science to enhance our capability to better understand the current state of the Earth system and to enable continual improvement in the prediction of future changes.

 

The TROPICS team is led by Principal Investigator Dr. William Blackwell at Massachusetts Institute of Technology’s (MIT) Lincoln Laboratory in Lexington and includes researchers from NASA, the National Oceanic and Atmospheric Administration (NOAA), and several universities and commercial partners.

 

NASA’s Launch Services Program at the agency’s Kennedy Space Center in Florida manages the launch service.

Mission Timeline for Today’s TROPICS Launch

Astra Rocket 3 for first TROPICS launch
Astra’s Rocket 3 sits at Space Launch Complex 46 on June 1, 2022, in preparation for the June 12 launch of the first two of six CubeSats that make up NASA’s Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission. The launch window opens at noon EDT. Photo Credit: Astra

NASA’s TROPICS CubeSats mission is scheduled to launch today, June 12, on an Astra Rocket 3 from Space Launch Complex 46 at Cape Canaveral Space Force Station in Florida. A two-hour window opens at noon EDT.

 Here’s a look at some of today’s upcoming milestones. All times are approximate:

COUNTDOWN

Min/Sec      Event

+0s               Lift-off

+6s               Begin Pitch Over

+1min 10s     Max-Q

+3min 00s     Main Engine Cutoff (MECO)

+3min 05s     Fairing separation

+3min 10s     Stage separation

+3min 15s     Upper stage ignition

+8min 30s     Second Engine Cutoff (SECO)

+8min 40s     Payload Deployment

Weather 40% Favorable for Today’s Launch at Start of Launch Window

Astra Rocket 3 with TROPICS 1 payload
Astra’s Rocket 3, with NASA’s TROPICS CubeSats, is shown on June 1, 2022, at Space Launch Complex 46 at Cape Canaveral Space Force Station, Florida, in preparation for a June 12, 2022, launch.

Weather officials with Cape Canaveral Space Force Station’s 45th Weather Squadron predict a 40% chance of favorable weather conditions at noon, the start of today’s launch window, with the forecast dropping to 10 percent favorable later in the afternoon.

The primary weather concern at the start of the launch window is a Cumulus Cloud Rule violation. Later in the launch window, concerns include Surface Electric Fields and Lightning rules.

TROPICS mission aims to improve observations of tropical cyclones. Six TROPICS satellites will work in concert to provide microwave observations of a storm’s precipitation, temperature, and humidity as often as every 50 minutes.