NASA’s CubeSat Launch Initiative soon will send two CubeSats to the International Space Station as cargo on the 21st Northrop Grumman commercial resupply mission.
CySat-1, designed and built by students from Iowa State University, measures Earth’s soil moisture content from low Earth orbit. The measurements will be taken with a software-defined radiometer, a system that uses software to process analog radio signals. Students will create computer programs to analyze those signals to determine levels of moisture in the soil present on the Earth. As Iowa State University’s first CubeSat, CySat-1 will be a technology demonstrator for future CubeSat missions.
Students at Arizona State University and NASA’s Jet Propulsion Laboratory (JPL) in Southern California developed DORA (Deployable Optical Receiver Aperture), a new technology CubeSat.
In the past, small satellites required precision pointing and only achieved low data transmissions in gathering information. The technology will demonstrate new optical communications without precision pointing and use a solid-state photon detector to gather high data rates using wide-field optical receivers. To test the detector’s performance, DORA will measure the background light from reflected sunlight, moonlight, and city lights when deployed from the space station into low Earth orbit.
The two demonstrations, CySat-1 and DORA, are both 3U CubeSats, a class of small satellites. The cube-shaped spacecraft are sized in standardized units, or Us, typically up to 12U. One CubeSat unit is defined as a volume of about 10x10x10 cm in size and typically weighs less than 2 kilograms.
The satellites will be released from the International Space Station using the Nanoracks CubeSat Deployer. One of the space station’s arms grabs and points the deployer in the proper direction to release the CubeSats into orbit.
Launch of the Cygnus spacecraft is targeted at 11:28 a.m. EDT Saturday, Aug. 3, on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
NASA’s PREFIRE CubeSat has deployed from the Rocket Lab’s Electron kick stage. The team will seek signal acquisition from the PREFIRE CubeSat and provide confirmation on the agency website when a signal is acquired. This concludes NASA’s live launch coverage of the mission.
NASA’s PREFIRE mission will help close a gap in our understanding of how much of Earth’s heat is lost to space from the Arctic and Antarctica. Analysis of PREFIRE measurements will inform climate and ice models, providing better projections of how a warming world will affect sea ice loss, ice sheet melt, and sea level rise.
Each PREFIRE satellite is fitted with an instrument called a thermal infrared spectrometer. The instrument contains specially-shaped mirrors and detectors for splitting and measuring infrared light and will make its readings using a device called a thermocouple, similar to sensors found in household thermostats. PREFIRE’s objectives are to supply scientists with new data on a range of climate variables, including atmospheric temperature, surface properties, water vapor, and clouds.
NASA jointly developed PREFIRE with the University of Wisconsin-Madison. The agency’s Jet Propulsion Laboratory in Southern California manages the mission for NASA’s Science Mission Directorate and provided the instruments. Blue Canyon Technologies built the CubeSats, and the University of Wisconsin-Madison is processing the data collected by the instruments. The science team includes members from JPL and the Universities of Wisconsin, Michigan, and Colorado.
NASA’s Launch Services Program, based out of the agency’s Kennedy Space Center in Florida, manages the launch service as part of the agency’s VADR (Venture-class Acquisition of Dedicated and Rideshare) launch services contract.
Rocket Lab will assess the weather as it evolves over the weekend and confirm a new target date soon.
This launch is the first of two planned launches, each sending a pair of shoebox-sized satellites, called CubeSats, to low Earth orbit. TROPICS will provide data on temperature, precipitation, water vapor, and clouds by measuring microwave frequencies, providing insight into storm formation and intensification. Originally, Rocket Lab was targeting 9 p.m. EDT, Sunday, April 30 (1 p.m. New Zealand Standard Time, Monday, May 1) for the launch.
Follow launch updates on this blog and stay connected with the mission on social media.
Four small, shoebox-sized satellites are being prepared to launch to the International Space Station as part of NASA’s Educational Launch of Nanosatellites (ELaNa) 49 mission. The small satellites, called CubeSats, will study a range of topics – from satellite communication methods to space weather to testing technology for robotic assembly of large telescopes.
The CubeSats will hitch a ride on the SpaceX Falcon 9 rocket and Dragon spacecraft set to deliver additional science, crew supplies, and hardware to the station during the company’s 26th commercial resupply services mission for NASA. Launch is targeted at 4:19 p.m. EST from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.
Satellite Communications
The first U.S. high school to send a CubeSat to space back in 2013, Thomas Jefferson High School for Science and Technology’s Research and Education Vehicle for Evaluating Radio Broadcasts satellite aims to study the use of iridium as a primary radio communication method. Additionally, the satellite will demonstrate using a passive magnet onboard and the Earth’s magnetic field for stabilization rather than using an attitude determination and control system for pointing accuracy and stabilization for iridium. What makes this satellite even more notable is that it was a system’s engineering project. The students selected space-grade parts, wired the electronics for the satellite, wrote the drivers to control the different systems, and coded the flight software.
“What’s special about TJREVERB isn’t necessarily the mission, it’s what we did. These kids literally built a satellite the way the industry would build a satellite; we selected parts from vendors and got those parts to work together,” said Kristen Kucko, robotics lab director and the school’s space faculty advisor. “This is an engineering feat.”
Structure Testing
The University of Michigan’s Measurement of Actuator Response In Orbit (MARIO) is a technology demonstration that will show how test structures made of a piezoelectric material – a type of material that bends when electricity is applied and can also generate electricity when bent – perform in low-Earth orbit. This will allow the spacecraft to bend or move without any rotating parts and could one day be used to point and adjust telescope mirrors more accurately.
Space Weather
NASA Goddard Space Flight Center’s Plasma Enhancement in The Ionosphere-Thermosphere Satellite (petitSat) will study density irregularities in the Earth’s ionosphere – a tiny fraction of the atmosphere made of plasma, or ionized gas. During long distance radio communication, the ionosphere reflects radio waves back to Earth. Disturbances in the upper atmosphere can change the shape of the ionosphere, creating a funhouse mirror effect and distorting these radio waves. The mission will use two instruments to measure the structure and motion of plasma in the ionosphere resulting from these changes in the upper atmosphere to better understand how these affect satellite communications.
NASA Marshall Space Flight Center’s Scintillation Prediction Observations Research Task (SPORT) will also look to the ionosphere to study space weather. The joint mission between the U.S. and Brazil will examine the formation of plasma bubbles, which sometimes scatter radio signals. Understanding how these bubbles are formed and how their evolution impacts communication signals can help scientists improve the reliability of communication and navigation systems.
“The more we learn about space weather – and how to predict it – the better we can protect our astronauts, spacecraft, and technology,” said Shelia Nash-Stevenson, SPORT project manager.
All of these were selected through NASA’s CubeSat Launch Initiative (CSLI), which provides U.S. educational institutions, nonprofits with an education/outreach component, informal educational institutions (museums and science centers), and NASA centers with access to space at a low cost. Once the CubeSat selections are made, NASA’s Launch Services Program works to pair them with a launch that is best suited to carry them as auxiliary payloads, taking into account the planned orbit and any constraints the CubeSat missions may have.
After a nominal first stage flight, the upper stage of the rocket shut down early and failed to deliver the TROPICS CubeSats to orbit.
NASA’s Launch Services Program, who managed the launch service for the mission, continues to work with emerging launch providers to deliver low-cost science missions into orbit through contracts that align with commercial practices, using less NASA oversight to achieve lower launch costs.
Small satellites and Class D payloads tolerate relatively high risk and serve as an ideal platform for technical and architecture innovation, contributing to NASA’s science research and technology development. The program offers opportunity for industry developing new launch capabilities.
Two TROPICS CubeSats have lifted off atop an Astra Rocket 3 from Space Launch Complex 46 at Cape Canaveral Space Force Station in Florida today, June 12, 2022. Launch occurred at approximately 1:43 p.m. EDT.
Astra has completed final liquid oxygen conditioning and resumed countdown for the launch of its Rocket 3, carrying two of NASA’s TROPICS CubeSats. Liftoff currently is scheduled for today at 1:43 p.m. EDT.
Each TROPICS satellite is identical – a 3U CubeSat about the size of a loaf of bread and weighing about 12 lbs.
The TROPICS CubeSat payload is a spinning microwave radiometer with highly integrated, compact microwave receiver electronics.
TROPICS satellite measures microwave frequencies ranging from about 90 to 205 gigahertz, which can monitor the atmospheric emissions made by water vapor, oxygen, and clouds in the atmosphere.
TROPICS target altitude is 550 kilometers, and pairs of CubeSats will have three slightly different low-Earth orbits, all at an angle about 30 degrees above the equator.
The TROPICS Pathfinder satellite, a proof-of-concept CubeSat that launched in June of 2021, has captured images of several tropical cyclones, such as Hurricane Ida over the United States, Cyclone Batsirai over Madagascar, and Super Typhoon Mindulle over eastern Japan. The pathfinder satellite has also provided the TROPICS research team an opportunity to fine tune the satellites’ software and operational procedures before the constellation launches. In addition, the pathfinder has already been calibrated and will be able to serve as a calibration reference for the rest of the TROPICS constellation satellites. The TROPICS pathfinder helps the TROPICS CubeSats start producing useful data quickly.
Astra’s Rocket 3 is an expendable, vertically-launched two stage rocket that uses liquid oxygen and kerosene as propellants. It has an overall length of 43 feet and is 52 inches in diameter. Astra designed it to fit inside a standard shipping container. Rocket 3 has five engines on its first stage, and one engine on its second stage.
TROPICS is an Earth venture instrument mission – science-driven, competitively selected, low-cost missions that provide opportunity for investment in innovative Earth science to enhance our capability to better understand the current state of the Earth system and to enable continual improvement in the prediction of future changes.
The TROPICS team is led by Principal Investigator Dr. William Blackwell at Massachusetts Institute of Technology’s (MIT) Lincoln Laboratory in Lexington and includes researchers from NASA, the National Oceanic and Atmospheric Administration (NOAA), and several universities and commercial partners.
NASA’s Launch Services Program at the agency’s Kennedy Space Center in Florida manages the launch service.