NASA’s CubeSat Launch Initiative soon will send two CubeSats to the International Space Station as cargo on the 21st Northrop Grumman commercial resupply mission.
CySat-1, designed and built by students from Iowa State University, measures Earth’s soil moisture content from low Earth orbit. The measurements will be taken with a software-defined radiometer, a system that uses software to process analog radio signals. Students will create computer programs to analyze those signals to determine levels of moisture in the soil present on the Earth. As Iowa State University’s first CubeSat, CySat-1 will be a technology demonstrator for future CubeSat missions.
Students at Arizona State University and NASA’s Jet Propulsion Laboratory (JPL) in Southern California developed DORA (Deployable Optical Receiver Aperture), a new technology CubeSat.
In the past, small satellites required precision pointing and only achieved low data transmissions in gathering information. The technology will demonstrate new optical communications without precision pointing and use a solid-state photon detector to gather high data rates using wide-field optical receivers. To test the detector’s performance, DORA will measure the background light from reflected sunlight, moonlight, and city lights when deployed from the space station into low Earth orbit.
The two demonstrations, CySat-1 and DORA, are both 3U CubeSats, a class of small satellites. The cube-shaped spacecraft are sized in standardized units, or Us, typically up to 12U. One CubeSat unit is defined as a volume of about 10x10x10 cm in size and typically weighs less than 2 kilograms.
The satellites will be released from the International Space Station using the Nanoracks CubeSat Deployer. One of the space station’s arms grabs and points the deployer in the proper direction to release the CubeSats into orbit.
Launch of the Cygnus spacecraft is targeted at 11:28 a.m. EDT Saturday, Aug. 3, on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
NASA will provide the CURIE (CubeSat Radio Interferometry Experiment) as a rideshare payload on the ESA (European Space Agency) inaugural flight of the Arianespace Ariane 6 rocket to provide a glimpse into the primary drivers of space weather. Launch is targeted for July 9 from Europe’s Spaceport, the Guiana Space Center in Kourou, in French Guiana.
Designed by Dr. David Sundkvist and a team from the University of California, Berkeley, CURIE is a radio interferometer comprising two 3U CubeSats that will launch bolted together as one before separating into two later in orbit. The experiment’s two CubeSats will provide two separate vantage points to measure the same radio waves coming from the Sun and other sources in the sky.
The CubeSats will study radio burst emissions from solar eruptive events such as flares and coronal mass ejections in the inner heliosphere – the region between the Sun and Jupiter. The ejections drive space weather often contributing to dramatic aurora events, and disrupting orbiting satellites, power grids, and communications on Earth.
The mission is the first of its kind to measure radio waves in the 0.1-19 MHz frequency range from space. It serves as an experimental platform and pathfinder in the development of new space-based radio observation techniques. NASA’s Science Mission Directorate funds and manages the mission through the Heliophysics Flight Opportunities for Research and Technology activity.
Earth’s ionosphere absorbs the particular radio waves CURIE will study – a region of charged gases 30 to 400 miles above the planet’s surface. The satellites will need an orbit around 360 miles above Earth to reduce radio wave blockage.
“NASA and ESA share a collaborative and mutually beneficial working relationship and are in constant communication about potential spacecraft and launch opportunities between the two agencies,” said Norman Phelps, mission manager with NASA’s Launch Services Program at the agency’s Kennedy Space Center in Florida. “ESA notified NASA it could provide a slot on the Ariane 6 if there was a CubeSat compatible with the orbital parameters and launch window, and after a thorough search, CURIE was selected.”
NASA’s CubeSat Launch Initiative (CSLI) manifested CURIE on the Ariane 6 after the agency selected the small satellite during the 11th round of CSLI candidates in 2020.
Since its inception, NASA’s CSLI has launched more than 150 CubeSats on a myriad of rockets and worked with more than 200 institutions and organizations, providing a low-cost way to conduct scientific investigations and technology demonstrations in space.
An issue with ground equipment caused a launch scrub at the last second for eight small satellite missions on a rideshare to space. NASA and Firefly Aerospace now are targeting 9:03 p.m. PDT, July 2 (12:03 a.m. EDT, July 3) for the launch of the CubeSats as part of NASA’s CubeSat Launch Initiative’s (CSLI) ELaNa (Educational Launch of Nanosatellites) 43.
Firefly Aerospace’s “Noise of Summer” will launch on an Alpha rocket from Space Launch Complex 2 at Vandenberg Space Force Base in California.
NASA and Firefly Aerospace are now targeting 9:03 p.m. PDT, July 1 (12:03 a.m. EDT, July 2) for the launch of eight CubeSats as part of NASA’s CubeSat Launch Initiative’s (CSLI) ELaNa (Educational Launch of Nanosatellites) 43.
Firefly Aerospace’s “Noise of Summer” will launch on an Alpha rocket from Space Launch Complex 2 at Vandenberg Space Force Base in California.
NASA and Firefly Aerospace are targeting no earlier than Wednesday, June 26, for the launch of eight CubeSats as part of NASA’s CubeSat Launch Initiative’s (CSLI) ELaNa (Educational Launch of Nanosatellites) 43. The 30-minute launch window will open at 9 p.m. PDT on June 26 (12 a.m. EDT on June 27).
Firefly Aerospace’s “Noise of Summer” will launch on an Alpha rocket from Space Launch Complex 2 at Vandenberg Space Force Base in California.
The CubeSats flying on ELaNa 43 are:
CatSat – University of Arizona, Tucson, Arizona
KUbe-Sat-1 – University of Kansas, Lawrence, Kansas
MESAT1 – University of Maine, Orono, Maine
R5-S4 – NASA’s Johnson Space Center, Houston, Texas
R5-S2-2.0 – NASA’s Johnson Space Center, Houston, Texas
SOC-i – University of Washington, Seattle, Washington
TechEdSat-11 – NASA Ames Research Center
Serenity – Teachers in Space
Firefly Aerospace is one of three companies selected under NASA’s Launch Services Program Venture-Class Launch Services Demonstration 2 (VCLS Demo 2) contract awarded in December 2020. The venture-class contracts illustrate how NASA offers opportunities for new launch providers to grow the commercial industry at all levels, which will result in cost-effective competition for NASA missions in the future.
NASA and Rocket Lab are targeting no earlier than Wednesday, May 22, 2024, for the first of two launches of the agency’s PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) mission to study heat loss to space in Earth’s polar regions. For the PREFIRE mission, two CubeSats will launch on two different flights aboard the company’s Electron rockets from Launch Complex 1 in Māhia, New Zealand. Each launch will carry one satellite.
NASA’s PREFIRE mission will fill a gap in our understanding of how much of Earth’s heat is lost to space from the polar regions. By capturing measurements over the poles that can only be gathered from space, PREFIRE will enable researchers to systematically study the planet’s heat emissions in the far-infrared – with ten times finer wavelength resolution than any previous sensor.
The Arctic and Antarctic help regulate Earth’s climate by radiating heat initially absorbed at the tropics back into space. But for regions like the Arctic, the spectrum of 60% of the energy escaping to space hasn’t been systematically measured. Filling in this picture is important for understanding which parts of the polar environment are responsible for heat loss and why the Arctic has warmed more than 2.5 times faster than the rest of the planet. In addition to helping us understand how the poles serve as Earth’s thermostat, PREFIRE observations of this heat exchange can improve our understanding of the mechanisms of polar ice loss and related questions of sea level rise and sea ice loss.
The instruments will fly on two identical CubeSats – one instrument per CubeSat – in asynchronous, near-polar orbits.
NASA and the University of Wisconsin-Madison jointly developed the PREFIRE mission. The agency’s Jet Propulsion Laboratory, located in Southern California, manages the mission for NASA’s Science Mission Directorate and provided the spectrometers. Blue Canyon Technologies built the CubeSats, and the University of Wisconsin-Madison will process the collected data.
The launch, which Rocket Lab named “Ready, Aim, PREFIRE,” will be followed by a second CubeSat mission launch several weeks later.. The second launch, which the company calls “PREFIRE and Ice,” will also lift off from New Zealand on an Electron rocket. NASA’s Launch Services Program selected Rocket Lab to launch both spacecraft as part of the agency’s VADR (Venture-class Acquisition of Dedicated and Rideshare) contract.
NASA’s CubeSat Launch Initiative is sending a group of four small satellites, called CubeSats, to the International Space Station as ELaNa 51 (Educational Launch of Nanosatellites). These small payloads have been developed by NASA and universities and will be deployed from low Earth orbit.
Once circling Earth, the satellites will help demonstrate and mature technologies meant to improve solar power generation, detect gamma ray bursts, determine crop water usage, and measure root-zone soil and snowpack moisture levels.
The suite of satellites will hitch a ride aboard a SpaceX Falcon 9 rocket and Dragon spacecraft set to deliver additional science, crew supplies, and hardware for the company’s 30th commercial resupply services mission for NASA. Liftoff is targeted for 4:55 p.m. EDT Thursday, March 21, from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
First Cornhusker State CubeSat
The first CubeSat from Nebraska is the Big Red Sat-1, which aims to investigate and improve the power production ability of solar cells. It is built by a team of middle and high school students mentored by University of Nebraska-Lincoln undergraduate engineering students.
The satellite measuring 1U, or one unit, (about four inches cubed), will test out Perovskite cells, a new type of solar cell designed to enhance power production with and without direct exposure to sunlight. The team will compare the power production to that of typical cells, called gallium arsenide solar cells, also flying on the CubeSat.
Detecting Gamma Ray Bursts
BurstCube is a NASA-developed 6U CubeSat designed to search the sky for brief flashes of high-energy light such as gamma-ray bursts, solar flares, and other hard X-ray transients.
Long and short gamma ray bursts are stellar remnants that can be the result of some of the universe’s most powerful explosions like the collapse or collision of massive stars, or when a neutron star collides with a black hole. BurstCube will use a new kind of compact, low-power silicon photomultiplier array to detect the elusive bursts of light.
With the ability to detect these brief flashes from space, BurstCube can help alert other observatories to witness changes in the universe as they happen. Astronomers can also benefit from the information because these bursts are important sources for gravitational wave discoveries.
Rooting Out Earth Water Sources from Space
The SigNals of Opportunity P-band Investigation, or SNoOPI, is a technology demonstration CubeSat designed to improve the detection of moisture levels on a global scale of underground root-zone and within snowpacks.
Root zone soil moisture and snow water equivalent play critical roles in the hydrologic cycle, impacting agricultural food production, water management, and weather phenomena. When scientists understand the amount of water in the soil, crop growth can be accurately forecasted, and irrigation can become more efficient.
The 6U CubeSat is collaboratively developed by NASA, Purdue University in Indiana, Mississippi State University, and the United States Department of Agriculture.
The fourth in the suite of small satellites, the University of Hawaiʻi at Mānoa’s HyTI (Hyperspectral Thermal Imager) is also a 6U CubeSat designed to study water sources.
Developed in partnership with NASA to map irrigated and rainfed cropland, HyTI is a pathfinder demonstration that packs the Hyperspectral Imager Instrument, temporal resolution thermal infrared imager focal plane technology, and high-performance onboard computing to help better understand crop water use and water productivity of major world crops.
With these tools, HyTI can help develop a more detailed understanding of the movement, distribution, and availability of water and its variability over time and space, an important contribution to global food and water security issues.
These payloads were selected through NASA’s CSLI, which provides U.S. educational institutions, nonprofits with an education/outreach component, informal educational institutions (museums and science centers), and NASA centers with access to space at a low cost.
Once the CubeSat selections are made, NASA’s Launch Services Program works to pair them with a launch that is best suited to carry them as auxiliary payloads.
NASA’s CubeSat Launch Initiative is sending a small satellite to orbit intended to demonstrate a multi-mode-capable thruster that can operate with both chemical and electrical modes potentially saving mass and reducing costs for larger missions.
The Multi-Mode Mission, or M³, developed by Missouri University of Science and Technology’s Satellite research team, is a CubeSat intended to demonstrate a new way to reposition spacecraft in flight. Payloads and spacecraft need the ability to modify the path of an ongoing mission quickly and easily – for example, to avoid another object. This could be accomplished with separate chemical and electric systems, but a multi-mode propulsion system would require less mass and volume while reducing costs.
M³ will use ionic propellant, which is low in cost and readily available. The thruster on the CubeSat contains a student-developed power processing unit and feed system, that uses the ionic propellant in both modes instead of one. Once M³ is in orbit and the propellant reaches the desired temperature, the flight computer will command the propellant feed system solenoid valves to open and the power processing unit to supply power to the payload, beginning an electrospray burn.
The M³ team started work in 2016 and managed several hurdles, including transitioning work to future classmates and the 2020 coronavirus (COVID-19) pandemic.
“The team traveled to Indianapolis to complete vibration testing and, as it turned out, we had to travel there twice,” said Emily Doddemeade, a senior in aerospace engineering from Highlands Ranch, Colorado, and the mission’s project manager. “One of the motherboards was faulty and we were informed that M³ needed to be tested with at least three accelerometers instead of the single one we originally used.”
After the second and successful vibration test, the M³ team managed to hand over their CubeSat for launch thanks in part to alums who could still help.
M³ will launch as part of SpaceX’s Transporter-10 Rideshare mission, targeted to lift off at 2:05 p.m. PST (5:05 p.m. EST) Monday, March 4, 2024, from Vandenberg Space Force Base in California. The CubeSat will begin transmitting seven days after ejection from the deployer, and the mission ends when the batteries discharge and M³ can no longer transmit data.
NASA’s CubeSat Launch Initiative provides U.S. educational institutions, nonprofits with an education/outreach component, informal educational institutions (museums and science centers), and agency centers with access to space at a low cost.
NASA has awarded Space Exploration Technologies Corp. of Hawthorne, California, one task order to launch two CubeSat Launch Initiative missions as part of the agency’s Venture-class Acquisition of Dedicated and Rideshare (VADR) launch services contract.
The CubeSats are targeted to launch no earlier than 2025 on a SpaceX Falcon 9 rocket. NASA will specify payloads closer to launch.
Building on NASA’s previous procurement efforts to foster development of a growing U.S. commercial launch market, VADR provides Federal Aviation Administration-licensed commercial launch services for payloads that can tolerate higher risk. By using a lower level of mission assurance, and commercial best practices for launching rockets, these highly flexible contracts help broaden access to space through lower launch costs.
SpaceX is one of 13 companies NASA selected for VADR contracts in 2022. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR contracts.
Editor’s note: This article was updated on April 4 to provide the latest target launch date information.
NASA is announcing two small CubeSats missions to launch on a commercial dedicated rideshare flight as part of the agency’s Educational Launch of Nanosatellites (ELaNa) initiative, which helps advance scientific and human exploration, as well as reduce the cost of new space missions, and expand access to space.
The CubeSat missions, which will study parts of Earth’s atmosphere and its radiation belt dynamics, are targeted for launch no earlier than April 2023 on a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California.
The Colorado Inner Radiation Belt Experiment (CIRBE) and Low-Latitude Ionosphere/Thermosphere Enhancements in Density (LLITED) are ELaNa missions 47 and 40, respectively.
CIRBE is a 3U CubeSat (1U, or unit = 10cm x 10cm x 10cm) from the University of Colorado Boulder, designed to provide state-of-the-art measurements within Earth’s radiation belt in a highly inclined low-Earth orbit. CIRBE aims for a better understanding of radiation belt dynamics, consequently improving the forecast capability of the energetic particles known to pose a threat to orbiting satellites as well as astronauts during spacewalks.
“Despite being the first scientific discovery of the space age, there are still many unsolved puzzles regarding the dynamics of these energetic particles,” said Dr. Xinlin Li, CIRBE principal investigator and professor at the university’s Laboratory for Atmospheric and Space Physics.
CIRBE’s sole instrument, Relativistic Electron Proton Telescope integrated little experiment-2 (REPTile-2), is an advanced version of an instrument previously in space from 2012 to 2014. The original REPTile could detect three energy channels, whereas REPTile-2 can distinguish 50 distinct channels, providing far greater measurement of elusive high energy particles with potential to damage satellites and penetrate spacesuits. REPTile-2 will measure the energies of incident electrons and protons, with its data downlinked to the ground via S-band radio. At mission’s end, the spacecraft’s orbit will begin degrading, eventually re-entering the atmosphere and burning up.
NASA’s LLITED consists of two 1.5U CubeSats developed by The Aerospace Corporation, Embry-Riddle Aeronautical University in Florida, and the University of New Hampshire (UNH). LLITED will study two late-day features of Earth’s atmosphere between 217 to 310 miles, with the aim of gaining a greater understanding of the interactions between the neutral and electrically charged parts of the atmosphere, consequently improving upper-atmosphere modeling capabilities and predictions for orbital proximity and re-entry.
“For the first time, we will be able to make simultaneous and co-located measurements of two phenomena in lower thermosphere/ionosphere – Equatorial Ionization Anomaly (EIA) and Equatorial Temperature Wind Anomaly (ETWA) – from a CubeSat platform,” said Dr. Rebecca Bishop, principal investigator for LLITED. “The two LLITED CubeSats will be able to observe changes in time and space of the two features.”
Both LLITED CubeSats carry three science instruments – a GPS radio-occultation sensor provided by Aerospace, an ionization gauge from UNH, and a planar ion probe provided by Embry-Riddle. Working together, the instruments will show how these atmospheric regions of enhanced density form, evolve, and then interact with each other after sunset.
“Because CubeSats can weigh 100 times less than larger satellites, missions such as LLITED demonstrate the potential of these small and cost-effective spacecraft to perform cutting-edge, comprehensive science experiments that previously were not feasible within traditional program resources,” said Bishop.
NASA’s CubeSat Launch Initiative (CSLI) supporting the agency’s Launch Services Program at Kennedy Space Center in Florida provides launch opportunities for small satellite payloads built by U.S. universities, high schools, NASA Centers, and non-profit organizations. To date, NASA has selected more than 225 CubeSat missions, representing participants from 42 states, the District of Columbia, Puerto Rico, and over 115 unique organizations.