Firefly Aerospace Reschedules CubeSat Launch After Scrub

Firefly Aerospace’s Alpha rocket carrying eight CubeSats as part of NASA’s CubeSat Launch Initiative’s (CSLI) ELaNa (Educational Launch of Nanosatellites) 43 mission rolls out of the company’s Payload Processing Facility to Space Launch Complex 2 at Vandenberg Space Force Base, California, on Sunday, June 30, 2024. Firefly Aerospace is one of three companies selected to fly small satellites to space under NASA’s Launch Services Program Venture-Class Launch Services Demonstration 2 (VCLS Demo 2) contract awarded in December 2020.
Firefly Aerospace’s Alpha rocket carrying eight CubeSats as part of NASA’s CubeSat Launch Initiative’s (CSLI) ELaNa (Educational Launch of Nanosatellites) 43 mission stands vertical at Space Launch Complex 2 at Vandenberg Space Force Base, California, on Monday, July 1, 2024. Photo credit: Firefly Aerospace

An issue with ground equipment caused a launch scrub at the last second for eight small satellite missions on a rideshare to space. NASA and Firefly Aerospace now are targeting 9:03 p.m. PDT, July 2 (12:03 a.m. EDT, July 3) for the launch of the CubeSats as part of NASA’s CubeSat Launch Initiative’s (CSLI) ELaNa (Educational Launch of Nanosatellites) 43.

Firefly Aerospace’s “Noise of Summer” will launch on an Alpha rocket from Space Launch Complex 2 at Vandenberg Space Force Base in California.

Launch Update for NASA’s ELaNa 43 CubeSats

Firefly Aerospace’s Alpha rocket carrying eight CubeSats as part of NASA’s CubeSat Launch Initiative’s (CSLI) ELaNa (Educational Launch of Nanosatellites) 43 mission rolls out of the company’s Payload Processing Facility to Space Launch Complex 2 at Vandenberg Space Force Base, California, on Sunday, June 30, 2024.
Firefly Aerospace’s Alpha rocket carrying eight CubeSats as part of NASA’s CubeSat Launch Initiative’s (CSLI) ELaNa (Educational Launch of Nanosatellites) 43 mission rolls out of the company’s Payload Processing Facility to Space Launch Complex 2 at Vandenberg Space Force Base, California, on Sunday, June 30, 2024. Photo credit: Firefly Aerospace

NASA and Firefly Aerospace are now targeting 9:03 p.m. PDT, July 1 (12:03 a.m. EDT, July 2) for the launch of eight CubeSats as part of NASA’s CubeSat Launch Initiative’s (CSLI) ELaNa (Educational Launch of Nanosatellites) 43.

Firefly Aerospace’s “Noise of Summer” will launch on an Alpha rocket from Space Launch Complex 2 at Vandenberg Space Force Base in California.

NASA’s ELaNa 43 CubeSats to Launch on Firefly’s Alpha Rocket

Image of Technicians from the University of Maine prepare CubeSat MESAT-1 for integration at Firefly’s Payload Processing Facility at Vandenberg Space Force Base, California on Monday, April 22, 2024. MESAT-1, along with seven other payloads, will be integrated into a Firefly Aerospace Alpha rocket for NASA’s Educational Launch of Nanosatellites (ELaNa) 43 mission as part of the agency’s CubeSat Launch Initiative and Firefly’s Venture-Class Launch Services Demonstration 2 contract.
Technicians from the University of Maine prepare CubeSat MESAT-1 for integration at Firefly’s Payload Processing Facility at Vandenberg Space Force Base, California on Monday, April 22, 2024. MESAT-1, along with seven other payloads, will be integrated into a Firefly Aerospace Alpha rocket for NASA’s Educational Launch of Nanosatellites (ELaNa) 43 mission as part of the agency’s CubeSat Launch Initiative and Firefly’s Venture-Class Launch Services Demonstration 2 contract. Photo credit: NASA

NASA and Firefly Aerospace are targeting no earlier than Wednesday, June 26, for the launch of eight CubeSats as part of NASA’s CubeSat Launch Initiative’s (CSLI) ELaNa (Educational Launch of Nanosatellites) 43. The 30-minute launch window will open at 9 p.m. PDT on June 26 (12 a.m. EDT on June 27).

Firefly Aerospace’s “Noise of Summer” will launch on an Alpha rocket from Space Launch Complex 2 at Vandenberg Space Force Base in California.

The CubeSats flying on ELaNa 43 are:

      • CatSat – University of Arizona, Tucson, Arizona
      • KUbe-Sat-1 – University of Kansas, Lawrence, Kansas
      • MESAT1 – University of Maine, Orono, Maine
      • R5-S4 – NASA’s Johnson Space Center, Houston, Texas
      • R5-S2-2.0 – NASA’s Johnson Space Center, Houston, Texas
      • SOC-i – University of Washington, Seattle, Washington
      • TechEdSat-11 – NASA Ames Research Center
      • Serenity – Teachers in Space

Firefly Aerospace is one of three companies selected under NASA’s Launch Services Program Venture-Class Launch Services Demonstration 2 (VCLS Demo 2) contract awarded in December 2020. The venture-class contracts illustrate how NASA offers opportunities for new launch providers to grow the commercial industry at all levels, which will result in cost-effective competition for NASA missions in the future.

Follow NASA’s Small Satellite blog for launch updates.

What’s On Board NASA’s Next CubeSat Launch Initiative Mission?

Two students from the Missouri University of Science and Technology research team work on the CubeSat called M3, short for Multi-Mode Mission. The team submitted their project to NASA’s CubeSat Launch Initiative for a launch into space.
Two students from the Missouri University of Science and Technology research team work on the Multi-Mode Mission CubeSat. The team submitted their project to NASA’s CubeSat Launch Initiative for a launch into space. Photo credit: Missouri University of Science and Technology

NASA’s CubeSat Launch Initiative is sending a small satellite to orbit intended to demonstrate a multi-mode-capable thruster that can operate with both chemical and electrical modes potentially saving mass and reducing costs for larger missions.

The Multi-Mode Mission, or M³, developed by Missouri University of Science and Technology’s Satellite research team, is a CubeSat intended to demonstrate a new way to reposition spacecraft in flight. Payloads and spacecraft need the ability to modify the path of an ongoing mission quickly and easily – for example, to avoid another object. This could be accomplished with separate chemical and electric systems, but a multi-mode propulsion system would require less mass and volume while reducing costs.

M³ will use ionic propellant, which is low in cost and readily available. The thruster on the CubeSat contains a student-developed power processing unit and feed system, that uses the ionic propellant in both modes instead of one. Once M³ is in orbit and the propellant reaches the desired temperature, the flight computer will command the propellant feed system solenoid valves to open and the power processing unit to supply power to the payload, beginning an electrospray burn.

The M³ team started work in 2016 and managed several hurdles, including transitioning work to future classmates and the 2020 coronavirus (COVID-19) pandemic.

“The team traveled to Indianapolis to complete vibration testing and, as it turned out, we had to travel there twice,” said Emily Doddemeade, a senior in aerospace engineering from Highlands Ranch, Colorado, and the mission’s project manager. “One of the motherboards was faulty and we were informed that M³ needed to be tested with at least three accelerometers instead of the single one we originally used.”

After the second and successful vibration test, the M³ team managed to hand over their CubeSat for launch thanks in part to alums who could still help.

M³ will launch as part of SpaceX’s Transporter-10 Rideshare mission, targeted to lift off at 2:05 p.m. PST (5:05 p.m. EST) Monday, March 4, 2024, from Vandenberg Space Force Base in California. The CubeSat will begin transmitting seven days after ejection from the deployer, and the mission ends when the batteries discharge and M³ can no longer transmit data.

NASA’s CubeSat Launch Initiative provides U.S. educational institutions, nonprofits with an education/outreach component, informal educational institutions (museums and science centers), and agency centers with access to space at a low cost.

Small Satellites Playing Larger Role in Science Investigations

The Low-Latitude Ionosphere/Thermosphere Enhancements in Density (LLITED) mission will measure and study two features of the upper atmosphere: the equatorial temperature and wind anomaly (ETWA) that occurs in the neutral atmosphere, and the equatorial ionization anomaly (EIA) that occurs in the region containing charged particles.
Seen here with its solar arrays deployed, the Low-Latitude Ionosphere/Thermosphere Enhancements in Density (LLITED) mission will measure and study two features of the upper atmosphere: the equatorial temperature and wind anomaly (ETWA) that occurs in the neutral atmosphere, and the equatorial ionization anomaly (EIA) that occurs in the region containing charged particles. Photo credit: Courtesy of The Aerospace Corporation

Editor’s note: This article was updated on April 4 to provide the latest target launch date information.

NASA is announcing two small CubeSats missions to launch on a commercial dedicated rideshare flight as part of the agency’s Educational Launch of Nanosatellites (ELaNa) initiative, which helps advance scientific and human exploration, as well as reduce the cost of new space missions, and expand access to space.

The CubeSat missions, which will study parts of Earth’s atmosphere and its radiation belt dynamics, are targeted for launch no earlier than April 2023 on a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California.

The Colorado Inner Radiation Belt Experiment (CIRBE) and Low-Latitude Ionosphere/Thermosphere Enhancements in Density (LLITED) are ELaNa missions 47 and 40, respectively.

CIRBE is a 3U CubeSat (1U, or unit = 10cm x 10cm x 10cm) from the University of Colorado Boulder, designed to provide state-of-the-art measurements within Earth’s radiation belt in a highly inclined low-Earth orbit. CIRBE aims for a better understanding of radiation belt dynamics, consequently improving the forecast capability of the energetic particles known to pose a threat to orbiting satellites as well as astronauts during spacewalks.

Engineers from University of Colorado’s Laboratory for Atmospheric and Space Physics integrate CIRBE into a dispenser at Maverick Space Systems in California ahead of launch at Vandenberg Space Force Base. Photo credit: Courtesy of University of Colorado Boulder, Laboratory for Atmospheric and Space Physics

“Despite being the first scientific discovery of the space age, there are still many unsolved puzzles regarding the dynamics of these energetic particles,” said Dr. Xinlin Li, CIRBE principal investigator and professor at the university’s Laboratory for Atmospheric and Space Physics.

CIRBE’s sole instrument, Relativistic Electron Proton Telescope integrated little experiment-2 (REPTile-2), is an advanced version of an instrument previously in space from 2012 to 2014. The original REPTile could detect three energy channels, whereas REPTile-2 can distinguish 50 distinct channels, providing far greater measurement of elusive high energy particles with potential to damage satellites and penetrate spacesuits. REPTile-2 will measure the energies of incident electrons and protons, with its data downlinked to the ground via S-band radio. At mission’s end, the spacecraft’s orbit will begin degrading, eventually re-entering the atmosphere and burning up.

NASA’s LLITED consists of two 1.5U CubeSats developed by The Aerospace Corporation, Embry-Riddle Aeronautical University in Florida, and the University of New Hampshire (UNH). LLITED will study two late-day features of Earth’s atmosphere between 217 to 310 miles, with the aim of gaining a greater understanding of the interactions between the neutral and electrically charged parts of the atmosphere, consequently improving upper-atmosphere modeling capabilities and predictions for orbital proximity and re-entry.

“For the first time, we will be able to make simultaneous and co-located measurements of two phenomena in lower thermosphere/ionosphere – Equatorial Ionization Anomaly (EIA) and Equatorial Temperature Wind Anomaly (ETWA) – from a CubeSat platform,” said Dr. Rebecca Bishop, principal investigator for LLITED. “The two LLITED CubeSats will be able to observe changes in time and space of the two features.”

Both LLITED CubeSats carry three science instruments – a GPS radio-occultation sensor provided by Aerospace, an ionization gauge from UNH, and a planar ion probe provided by Embry-Riddle. Working together, the instruments will show how these atmospheric regions of enhanced density form, evolve, and then interact with each other after sunset.

“Because CubeSats can weigh 100 times less than larger satellites, missions such as LLITED demonstrate the potential of these small and cost-effective spacecraft to perform cutting-edge, comprehensive science experiments that previously were not feasible within traditional program resources,” said Bishop.

NASA’s CubeSat Launch Initiative (CSLI) supporting the agency’s Launch Services Program at Kennedy Space Center in Florida provides launch opportunities for small satellite payloads built by U.S. universities, high schools, NASA Centers, and non-profit organizations. To date, NASA has selected more than 225 CubeSat missions, representing participants from 42 states, the District of Columbia, Puerto Rico, and over 115 unique organizations.