During SpaceX’s 26th commercial resupply services mission to the International Space Station for NASA, the Dragon spacecraft will deliver more than 7,700 pounds of supplies, equipment and several science investigations to the crew aboard the station, including the next pair of International Space Station Roll Out Solar Arrays (iROSAs), which will increase the power on the space station. Among the science experiments are:
A study to grow dwarf tomatoes to help create a continuous fresh-food production system in space, as well as an experiment that tests an on-demand method to create specific quantities of key nutrients.
Other studies launching include a test of a microscope with potential deep space applications and Engineered Heart Tisues-2 (EHT-2), a study of cardiac health. This experiment builds on an investigation of 3D cultures aboard the space station in 2020. The previous experiment detected changes at the cellular and tissue level that could provide early indication of the development of cardiac disease. This study tests whether new therapies could prevent these negative effects from occurring.
Humans have occupied the space station continuously since November 2000. In that time, 263 people and a variety of international and commercial spacecraft have visited the orbital outpost. It remains the springboard to NASA’s next great leap in exploration, including future missions to the Moon under Artemis, and ultimately, human exploration of Mars.
Also hitching a ride on this mission are four CubeSats for NASA’s Educational Launch of Nanosatellites, or ELaNa. They will be deployed after launch. The first is Measurement of Actuator Response in Orbit (MARIO), which will add telescopes to an existing CubeSat in low-Earth orbit. The second is called petitSat. The CubeSat’s goal is to figure out how plasma bubbles and blobs affect communication, GPS, and radar signals. The third is called Scintillation Prediction Observation Research Task (SPORT), a joint mission between the U.S. and Brazil to investigate the conditions that lead to the formation of plasma bubbles.
The final CubeSat is called Thomas Jefferson High School for Science and Technology’s Research and Education Vehicle for Evaluating Radio Broadcasts (TJREVERB), developed by high school students, which will test the strength and consistency of iridium radio signals, the main way we communicate with CubeSats.
Read more at ELaNa 49 mission.