Balloon-Borne SuperBIT Telescope Releases 1st Research Images

The Tarantula nebula appears as a vivid burst of pink, red and gold in the center of the black, star-dusted background of space. The nebula is intensely colored near the center of the image, fading to dusty clouds of dark red and purple toward the edges. The entire nebula has the appearance of a bright cloud of glowing dust. Many stars are visible in the background, including shining through the nebula.
The Tarantula Nebula taken by the Super Pressure Balloon Imaging Telescope (SuperBIT). Credits: NASA/SuperBIT

The Super Pressure Balloon Imaging Telescope (SuperBIT) that launched on a scientific super pressure balloon April 16, 2023, local time from Wānaka, New Zealand, captured its first research images from this flight of the Tarantula Nebula and Antennae Galaxies. These images were captured on a balloon-borne telescope floating at 108,000 feet above Earth’s surface, allowing scientists to view these scientific targets from a balloon platform in a near-space environment.

The advantage of balloon-based versus space telescopes is the reduced cost of not having to launch a large telescope on a rocket. A super pressure balloon can circumnavigate the globe for up to 100 days to gather scientific data. The balloon also floats at an altitude above most of the Earth’s atmosphere, making it suitable for many astronomical observations.

The SuperBIT telescope captures images of galaxies in the visible-to-near ultraviolet light spectrum, which is within the Hubble Space Telescope’s capabilities, but with a wider field of view. The goal of the mission is to map dark matter around galaxy clusters by measuring the way these massive objects warp the space around them, also called “weak gravitational lensing.”

The Antennae Galaxies as seen by SuperBIT. The nebula is a slightly transparent, light blue mass in the middle of the image. The mass is divided into two lobes, shaped like teardrops. The upper lobe has a spiral of light blue and yellow in its center. Extending straight up and down from the two lobes are two thin tails of gas and dust, which look like antenna. The nebula is on the backdrop of black space, dotted with white and blue stars. The largest stars, one in the upper right and one in the lower left, each have four diffraction spikes.
The Antennae Galaxies taken by the Super Pressure Balloon Imaging Telescope (SuperBIT). Credits: NASA/SuperBIT

The Tarantula Nebula is a large star-forming region of ionized hydrogen gas that lies 161,000 light-years from Earth in the Large Magellanic Cloud, and its turbulent clouds of gas and dust appear to swirl between the region’s bright, newly formed stars. The Tarantula Nebula has previously be captured by both the Hubble Space Telescope and James Webb Space Telescope.

The Antennae galaxies, cataloged as NGC 4038 and NGC 4039, are two large galaxies colliding 60 million light-years away toward the southerly constellation Corvus. The galaxies have previously been captured by the Hubble Space Telescope, Chandra X-ray Observatory, and now-retired Spitzer Space Telescope. A composite image of the galaxies combines data taken by all three telescopes.

SuperBIT’s first research images from this flight were released by Durham University here. The SuperBIT team is a collaboration among NASA; Durham University, United Kingdom; the University of Toronto, Canada; and Princeton University in New Jersey.