By Beverly Perry
The countdown to the last full-scale test firing of the massive Space Launch System (SLS) solid rocket boosters has begun. Mark your calendars: June 28, 8:05 a.m. MDT.
Expect two minutes of shock and awesome as the flight-like motor burns through about six tons of propellant each second during the test. With expanding gases and flames exiting the nozzle at speeds in excess of Mach 3 and temperatures reaching 3,700 degrees Fahrenheit, say goodbye to some of the sand at Orbital ATK’s test facility in the Utah desert because after the test, the sand at the aft, or rear, end of the booster motor will be glass.
The 154-foot long Qualification Motor 2 (QM-2) consists of the five propellant-filled segments in the middle of the booster; the aft skirt is also part of the test, but the forward assembly (nose cap, forward skirt) won’t be. (See our Boosters 101* infographic if you need a refresher on booster parts and assemblies). The test will broadcast live on NASA TV and our Facebook page. We will also live tweet from @NASA_SLS on Twitter.
For those watching at home (or work), here are three cool things that might not be so obvious on the screen, in countdown order.
3. This motor’s chill. QM-2’s been chilling — literally, down to 40 degrees — since the first week in May in Orbital ATK’s “test bay housing,” a special building on rails that moves to enclose the booster and rolls back so the motor can be test-fired. Even though SLS will launch from the normally balmy Kennedy Space Center in Florida, temperatures can vary there and engineers need to be sure the booster will perform as expected whether the propellant inside the motor is 40 degrees or 90 degrees (the temperature of the propellant during the first full-scale test, Qualification Motor 1 or QM-1).
2. This booster’s on lockdown. If you happen to be near Promontory, Utah on June 28, you can view the test for yourself in the public viewing area off State Route 83. And don’t worry, this booster’s not going anywhere — engineers have it locked down. The motor is held securely in place by Orbital ATK’s T-97 test stand.
During the test, the motor will push against a forward thrust block with more than three million pounds of force. Holding down the rocket motor is more than 13 million pounds of concrete — most of which is underground. The test stand contains a system of load cells that enable engineers to measure the thrust the motor produces and verify their predictions.
Putting out the fire at the end of the test is the job of the quench system, which fills the motor with carbon dioxide from both ends of the test stand. A deluge system sprays water on the motor to keep the metal case from getting too hot so the hardware can be re-used. Both the quench and deluge systems had to be upgraded to handle the heat and size of the big five-segment boosters.
1. Next time, it’s for real. These solid rocket boosters are the largest and most powerful ever built for flight. They’ve been tested and retested in both full-scale and smaller subsystem-level tests. Engineers have upgraded and revamped vital parts like the nozzle, insulation and avionics control systems. They’ve analyzed loads and thrust, run models and simulations, and are nearing the end of verifying their designs will work as expected.
Most of this work was necessary because, plainly put, SLS needs bigger boosters. Bigger boosters mean bolder missions – like around the moon during the first integrated mission of SLS and Orion. So the next time we see these solid rocket motors fire, they will be propelling SLS off the launch pad at Kennedy Space Center and on its first flight with Orion. For real.
Next time: Behind the Scenes at QM-2: Getting Ready to Test the World’s Largest Solid Rocket Motor.
Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!