Mars Rover Perseverance: A Key Step Toward Human Exploration of Mars

 

By: Richard (Rick) Davis, Bob Collom, David McIntosh, & Michelle Viotti 

Artist Concept: Mars rover Perseverance sets out to seek signs of life – and prepare for a human future on Mars. Credit: NASA/JPL-Caltech

Exciting times as Mars 2020 Rover Perseverance is getting ready to set off on a life-seeking mission, but it marks the beginning of so much more! The Mars 2020 mission is actually the first of a multi-mission effort to return samples from Mars to Earth. That interplanetary round-trip campaign is a precursor for future round-trip crew-carrying spacecraft that will take humans back and forth between Earth and Mars over several missions, ultimately leading to a sustained human presence on the surface of the red planet!

The returned samples that Perseverance collects will be critical for high-priority scientific investigations about microbial life, but will also allow human-mission planners to understand the mechanical properties of the Martian dust, dirt, rocks, and minerals (the “regolith”) – that is, how abrasive they are, their oxidizing potential, particle size and shape, etc. That information will teach us about potential human-health hazards: toxicity, respiratory issues, and potential biohazards of any existing microbial life on Mars etc. These data will help mission planners design strategies to safeguard Mars explorers. The analysis of minerals in the returned samples may also have a direct impact on understanding what natural mineral resources are potentially available for future human use on Mars.

Beyond kicking off the Mars sample return campaign, Perseverance will gather mission-enabling knowledge critical to every phase of humanity’s own future round-trip voyages to Mars: getting safely to the Martian surface, living and working on Mars, and returning home to Earth.

Getting Safely to the Martian Surface

The Mars Entry, Descent, and Landing Instrument (MEDLI) will tell mission planners how to protect humans during entry, descent, and landing, one of the riskiest parts of any Mars mission. Credit: NASA/JPL-Caltech

The Mars 2020 aeroshell that protects the rover on its journey carries sensors that will tell us how the spacecraft heats up and performs during entry into the Martian atmosphere. That information will help engineers improve landing designs for the larger crew and cargo landers necessary for human missions. During descent, the rover will demonstrate a new autonomous guidance system called Terrain Relative Navigation (TRN). This hazard-avoidance system may join beacons and other technologies that support landing large cargo in advance of humans, as well as eventual piloted landings by crewed vehicles.

Living and Working on Mars

Right: Artist concept of a possible in-situ resource utilization (ISRU) facility (foreground) on Mars. Credit: NASA

Mars is an extreme environment, but Perseverance is going to make the most of it. The rover carries a special “lung” that will produce oxygen from Mars’ carbon-dioxide atmosphere. It will be the very first demonstration of how to process natural resources on Mars for human use. Large quantities of oxygen will be needed to produce propellant (“rocket fuel”) for astronauts’ return trip home to Earth, as well as to provide back-up oxygen supplies for breathable air.

The oxygen-generating instrument will also monitor how abundant Martian dust in the atmosphere interacts with machinery to improve future engineering designs. In addition, Perseverance’s new weather-monitoring capabilities are specially designed to enhance our understanding of the relationship between dust and weather through the Martian seasons. Learning more about Martian dust will help engineers design better shelters for astronauts, as well as equipment that has to function for long durations on the surface. After all, Mars-bound explorers will want to know their equipment will work for years in the Martian environment.

Once at home on the surface, future human explorers venturing outdoors on Marswalks will need spacesuits that are strong enough to withstand the elements, but flexible enough to move around with agility. Perseverance carries five samples of different space-suit materials to see how each performs in long exposures to radiation and dust in the Martian environment.

As they explore, robotic companions will likely join the crew to enhance their scientific investigations and help keep them safe, just as Perseverance has a helicopter pal named Ingenuity. Like drones here on Earth, Ingenuity will soar overhead, demonstrating how future aerial vehicles could scout out compelling places for humans to explore – or venture into places too steep or too hazardous for people.

Perseverance carries a ground-penetrating radar called RIMFAX (Radar Imager for Mars’ subsurface experiment), which will reveal the Martian subsurface. Artist Concept. Credit: NASA/JPL-Caltech/FFI

Perseverance also demonstrates the first ground-penetrating radar on the Martian surface. Similar systems will land at a potential human base in advance of people arriving, to look for precious water resources found in subsurface water ice. Just as we can extract valuable resources from the Martian atmosphere, water ice on Mars can be processed to produce hydrogen, another key ingredient of propellant needed for launching back to Earth from Mars.

While Perseverance’s landing site in Jezero Crater is likely too close to the equator for water ice to be present, a future ice-seeking orbiter will be able to calibrate its radar with Perseverance’s results, helping to ensure resources are really there and accessible before humans arrive. Seeing the structure of subsurface rock layers will also ensure that the ground below is stable enough for landing heavy human-class payloads such as a life-supporting habitat and for building a launch pad and other infrastructure needed by human explorers.

Returning to our Home World: Earth

The “Mother Ship” (Mars Transfer Vehicle) will transport humans back and forth between Earth and Mars. Credit: NASA

Thanks to the Mars 2020 mission, living and working on Mars will be safer and more comfortable, from habitat design to “walkabouts.” When the first humans are ready to blast off from Mars on their voyage back to Earth, they will use oxygen, hydrogen, and methane fuel that can be traced back to Perseverance’s demonstrations of how to use Martian natural resources. And, just like the samples Perseverance collects, Mars astronauts will launch on a Mars Ascent Vehicle and reunite with a “Mothership” that will carry them safely home. While sending humans to Mars is a complex endeavor, making step-by-step progress through Perseverance and other advances, our human adventure on Mars is closer than ever.

Looks Can Be Deceiving

By Richard (Rick) Davis and Bob Collom

It’s funny, actually. The above panorama, courtesy of the Curiosity Rover, makes Mars look like a desert in Arizona, somewhere hot and rocky but habitable. But, Mars isn’t like any desert in Arizona. Mars has more in common with the summit of K21. It might look sunny, but the temperature sits around 32°F at midday and gets down to -110°F at night2. There is an atmosphere, but it’s impossible to breathe due to the fact that it’s 96% Carbon Dioxide with only 1% the density of the atmosphere on Earth. By comparison even the top of K2 averages 19°F during the day and 0°F at night and still has 33% of the atmospheric density as compared to sea level.

We will learn to master this terrain. But, these panoramas can trick us; they can make it look like the surface of Mars is safer than being in space. In truth, however, humans have been living in space for decades, and have learned how to do so safely. We have never tried to live on another planet. If there was a rule for Low Earth orbit missions it would be, “space is dangerous; the surface is safe.” We need to be careful not to get stuck in a paradigm and assume the same rule applies to Mars. We need to look at this panorama and see past the beautiful, Earth-like landscapes, to the challenges that underlie them. Mars is nowhere near as safe as the amazing planet that we call home!

These misconceptions are exciting for me. They point to all of the mysteries that still need to be uncovered and all of the technology we need to develop. We will need to practice and learn before we know as much about living on Mars as we do living in space. It strongly suggests that we will need to incrementally step our way to permanent presence on Mars—with orbital missions coming first, followed by short and then increasingly longer stays on this new planet. Even this step wise approach will be incredibly challenging as we learn to overcome the challenges that Mars poses, but if becoming a multi-planetary species was easy, it wouldn’t be fun!

[1] The second tallest mountain on planet Earth and the hardest mountain to climb
[2] Based on air temperature data from the Curiosity rover in Gale crater taken over the course of 200 sols

Mars is Closer Than You Think

By Richard (Rick) Davis and Bob Collom

What qualifies as a challenge for a society evolves as the society evolves. The frontier has moved beyond the west, beyond the surface of the Earth, and beyond the Moon. Our frontier is at Mars. What took Roald Amundsen a lifetime of effort can be replicated in a matter of days now. What took Lewis and Clark more than 2 years can be accomplished in a matter of hours. These things are easy today, they are not a challenge, and they do not inspire. It will not be easy to traverse the expanse of space and land on an entirely new planet, but exploration is not about doing what is easy.

On May 25, 1961, when Kennedy first said, “I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the moon and returning him safely to the Earth,” humanity was only taking its first steps into the frontier of space. Only two people had left the Earth for a cumulative time in space of just over two hours, and yet Kennedy and a nascent NASA proclaimed that America could put an astronaut on the Moon. Fast-forward to today, humanity has spent more than 50,000 days in space, launched thousands of rockets and hundreds of astronauts, developed supercomputers millions of times more powerful than those of 1961, and visited every major body in our solar system. Mars may be 200 times farther than the Moon at closest approach, but we may be thousands of times more prepared to achieve this.

Mars is a destination that compels and inspires. To quote a recent college student and an aspiring Mars explorer, “The first person to walk on the moon didn’t happen in my life time but I would love to be a part of the first humans on Mars.” This energy will propel humanity beyond the confines of the Earth and out into the Solar System. From the Mercury Program to the Curiosity rover, we have been preparing to send humans to Mars for 60 years.

The following table underscores how much our capabilities have grown since 1961:

The following tables outline more detailed areas of comparison:

 

[1] The date of JFK’s speech before a joint session of Congress in which he committed the nation to landing a person on the Moon
[2] Includes Yuri Gagarin and Alan Shepard’s flights
[3] Compiled from astronaut, cosmonaut, taikonaut, and space tourist biographies
[4] Alan Shepard’s May 5, 1961 Mercury-Redstone 3 flight
[5] Achieved by Pioneer V on June 26, 1960
[6] Achieved by Voyager 1 as of August 4, 2017
[7] From the historians at the Museum of Computer History
[8] Floating Point Operations Per Second
[9] Includes Vanguard 1, Vanguard 2, Explorer 7, Transit 2A, Solrad 1, Echo 1, Explorer 9, Discoverer 20, Discoverer 21, Discoverer 23, and Explorer 11
[10] Includes active solar system probes. Taken from: http://celestrak.com/satcat/boxscore.asp
[11] Includes Russian, US, and Chinese crewed launches
[12] Includes ESA member nations
[13] Starting on Oct. 31 2000 with ISS expedition 1
[14] Average perigee for Moon and Mars from: https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html and the calculations of Ryan Woolley
[15] His journey from Ft Niagara to the mouth of the Mississippi that claimed much of what became the Louisiana Purchase
[16] Crew Perished on return journey
[17] Adjusted for inflation to 2016 dollars
[18] Adjusted for inflation to 2016 dollars

Frontiers Shatter Complacency

By Richard (Rick) Davis and Max Parks
The Martian moon Phobos (moving white dot) orbits Mars, as seen from the Hubble Space Telescope

My name is Rick Davis- I work at NASA Headquarters, where I work in the Mars Exploration Program and co-lead the effort to choose the landing site for humans on Mars. In my time at NASA, I’ve instructed Space Shuttle crews, was a Space Station Capsule Communicator, and worked in Russia for three and a half years, coordinating NASA’s presence at Star City– the home of Russia’s Cosmonaut Corps.

My life as an engineer is only part of the picture. Before I studied aerospace engineering, I studied history. As I learned about the past, the idea of frontiers, and how important they are to us as a species, became central to my perspective of the universe. That’s why I’m so passionate about Mars.

La Salle on the Mississippi

Pushing into a frontier is important. Human beings thrive when success is not guaranteed. Frontiers are like that for entire societies. Voyages of exploration like that of Lewis and Clark, or the French explorer La Salle, the first European to sail the length of the Mississippi River, bring out the bravest and most ingenious within us. Rising to meet the challenges that we face on a frontier helps us learn more about ourselves and about our place in the cosmos. Without the risks of exploration, unless we challenge the unknown, complacency will prevent humanity from achieving our full potential.

Mars is the next step in exploration, and when I see the amazing work being done by the people at NASA, in industry and in academia, as well as in so many other national space programs, I know that we’re ready for this step.

Sunrise on Mars

To be frank, I was unsure about starting a blog. But Mars is challenging- to do it right, we will need a lot of ideas. Hopefully, by sharing stories as more is learned about Mars, this blog can help spark new ideas. The fact is, we don’t yet know if we can live on an alien planet; there are tremendous challenges we are working to solve. If you have ideas, we want to hear about them. We need ideas from all over to make this happen.

About:

To follow the effort to select a site for the first human base on Mars, head on over to https://www.nasa.gov/journeytomars/mars-exploration-zones.
To contact us, send an email to NASA-Mars-Exploration-Zones@mail.nasa.gov.