Science in the Southern Hemisphere: SOFIA Deploys to Chile

versión en español

By Maggie McAdam

NASA’s Stratospheric Observatory for Infrared Astronomy, or SOFIA, landed at the Santiago International Airport on March 18, 2022. Like other deployments to the Southern Hemisphere, SOFIA is temporarily changing its base of operations from Palmdale, California, to Santiago, Chile, to observe celestial objects that can only be seen from Southern Hemisphere latitudes. NASA and its partner of the SOFIA mission, the German Space Agency at DLR, are excited to deploy to Chile for the first time.

SOFIA on the runway at Santiago International Airport
SOFIA arrives at the Santiago International Airport. Credit: NASA/Raphael Ko

This is SOFIA’s first visit to South America, and its first short-term deployment that will last two weeks. The team will operate from the Santiago International Airport to accomplish eight science flights. SOFIA will primarily observe the Large and Small Magellanic Clouds during the deployment, which are two galaxies that are our Milky Way’s closest galactic neighbors. Both are gravitationally bound with the Milky Way and will eventually merge with our galaxy in several billion years.

“Scientific collaboration, particularly in astronomy, has been a cornerstone of the U.S.-Chile relationship dating back to the establishment of the Observatorio de Cerro Santa Lucia in Santiago more than 170 years ago,” said Richard Glenn, the U.S. Embassy Chile Chargé d’Affaires. “NASA’s SOFIA deployment to Chile is the next exciting milestone in that relationship, bringing us closer to the stars than ever before.”

This is called a short deployment because of the shorter time in country compared to SOFIA’s long deployments, where more than 25 flights are typically planned using multiple instruments. The SOFIA team is taking a single instrument, the Far Infrared Field Imaging Line Spectrometer, or FIFI-LS, and will observe several critical Southern Hemisphere celestial targets.

“We are thrilled to deploy to Chile so we can provide more access to the Southern Hemisphere skies for our scientific community,” said Naseem Rangwala, SOFIA’s project scientist. “We are increasing our deployment tempo with a focus on efficiency and prioritized targets, and we are grateful for the opportunity to do that from Santiago.”

Since the Large Magellanic Cloud, or LMC, is so close to our galaxy, SOFIA can observe it in great detail, on relatively small astronomical scales, to help scientists better understand how stars formed in the early universe. Having the context of the physical areas in which stars form is why these LMC observations are so powerful. Scientists cannot see detailed physical structures in distant, ancient galaxies, so, instead, galaxies like the LMC are observed as local stand-ins. The planned observations are to create the first map of ionized carbon in the LMC. These observations pair well with NASA’s upcoming Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory, or GUSTO mission, and they extend the legacy of the Herschel Space Observatory.

Large Magellanic Cloud
The Large Magellanic Cloud, one of the objects SOFIA will observe during deployment. Credit: ESA/NASA/Hubble

In addition to the observations of the Large Magellanic Cloud, SOFIA will observe supernova remnants to investigate how certain types of supernovas might have contributed to the abundance of dust in the early universe. SOFIA will also attempt its first observation to measure the primordial abundance of lithium by looking into the halo of our galaxy where clouds of neutral hydrogen can be found. These clouds have been relatively undisturbed and thus directly probe the properties of pristine gas that existed in the early universe. A successful observation of lithium could have implications for our understanding of fundamental physics and the early universe because there is a significant discrepancy in lithium abundance between the big-bang theory of the evolution of the universe and the observed abundance from astronomical measurements.

SOFIA is a joint project of NASA and the German Space Agency at DLR. DLR provides the telescope, scheduled aircraft maintenance, and other support for the mission. NASA’s Ames Research Center in California’s Silicon Valley manages the SOFIA program, science, and mission operations in cooperation with the Universities Space Research Association, headquartered in Columbia, Maryland, and the German SOFIA Institute at the University of Stuttgart. The aircraft is maintained and operated by NASA’s Armstrong Flight Research Center Building 703, in Palmdale, California.

Media inquiries regarding SOFIA’s southern deployment should be sent to the NASA Ames newsroom.


Ciencia en el hemisferio sur: SOFIA se despliega en Chile

By Maggie McAdam

El Observatorio Estratosférico para Astronomía Infrarroja de la NASA, o SOFIA, aterrizó en el Aeropuerto Internacional de Santiago el 18 de marzo de 2022. Al igual que otros despliegues en el hemisferio sur, SOFIA cambia temporalmente su base de operaciones de Palmdale, California, a Santiago de Chile, para observar objetos celestes que solo pueden verse desde latitudes del hemisferio sur. La NASA y su socio en la misión SOFIA, la Agencia Espacial Alemana (DLR por sus siglas en alemán), están entusiasmados con el primer despliegue en Chile.

SOFIA on the runway at Santiago International Airport
SOFIA llega al Aeropuerto Internacional de Santiago. Crédito: NASA/Raphael Ko

Esta es la primera visita de SOFIA a Sudamérica, y su primer despliegue a corto plazo que durará dos semanas. El equipo operará desde el Aeropuerto Internacional de Santiago para realizar ocho vuelos científicos. Durante el despliegue, SOFIA observará principalmente la Nube Grande y la Nube Pequeña de Magallanes, dos galaxias que son las vecinas más cercanas de nuestra Vía Láctea. Las dos están ligadas gravitacionalmente a la Vía Láctea y acabarán fusionándose con nuestra galaxia dentro de varios miles de millones de años.

“La colaboración científica, especialmente en el campo de la astronomía, ha sido un pilar de la relación entre Estados Unidos y Chile que comenzó con el establecimiento del Observatorio de Cerro Santa Lucía en Santiago hace más de 170 años”, dijo Richard Glenn, Encargado de Negocios de la Embajada de Estados Unidos en Chile. “El despliegue de SOFIA de la NASA en Chile es el siguiente hito emocionante en esa relación, acercándonos a las estrellas como nunca antes”.

Este despliegue se considera corto debido al menor tiempo de permanencia en el país en comparación con los despliegues largos de SOFIA, en los que normalmente se planifican más de 25 vuelos con múltiples instrumentos. El equipo de SOFIA llevará un solo instrumento, el Espectrómetro de Línea de Imagen del Campo Infrarrojo Lejano, o FIFI-LS, y observará varios objetivos celestes críticos del hemisferio sur.

“Estamos encantados de desplegarnos en Chile para poder ofrecer a nuestra comunidad científica un mayor acceso a los cielos del hemisferio sur”, declaró Naseem Rangwala, científico del proyecto SOFIA. “Estamos aumentando nuestro ritmo de despliegue con un enfoque en la eficiencia y en los objetivos prioritarios, y estamos agradecidos por la oportunidad de hacerlo desde Santiago”.

Puesto que la Gran Nube de Magallanes, o LMC por sus siglas en inglés, está tan cerca de nuestra galaxia, SOFIA puede observarla con gran detalle, en escalas astronómicas relativamente pequeñas, para ayudar a los científicos a entender mejor cómo se formaron las estrellas en el universo primitivo. Tener el contexto de las zonas físicas en las que se forman las estrellas es la razón por la que estas observaciones de la LMC son tan potentes. Los científicos no pueden ver las estructuras físicas detalladas de las galaxias antiguas y lejanas, por lo que, en su lugar, las galaxias como la LMC se observan como sustitutos locales. Las observaciones previstas tienen por objeto crear el primer mapa del carbono ionizado en la LMC. Estas observaciones se combinan con el próximo Observatorio Espectroscópico de Terahercios ULDB Galáctico/Extra galáctico de la NASA, o misión GUSTO, y amplían el legado del Observatorio Espacial Herschel.

Large Magellanic Cloud
La Gran Nube de Magallanes, uno de los objetos que SOFIA observará durante su despliegue. Crédito: ESA/NASA/Hubble

Además de las observaciones de la Gran Nube de Magallanes, SOFIA observará restos de supernovas para investigar cómo ciertos tipos de supernovas podrían haber contribuido a la abundancia de polvo en el universo primitivo. SOFIA también intentará llevar a cabo su primera observación para medir la abundancia primordial de litio mirando en el halo de nuestra galaxia donde se encuentran las nubes de hidrógeno neutro. Estas nubes han permanecido relativamente inalteradas y, así, pueden investigar directamente las propiedades del gas prístino que existía en el universo primitivo. Una observación exitosa del litio podría tener implicaciones para nuestra comprensión de la física fundamental y del universo primitivo, ya que existe una discrepancia significativa en la abundancia de litio entre la teoría del Big Bang de la evolución del universo y la abundancia observada a partir de las mediciones astronómicas.

SOFIA es un proyecto conjunto de la NASA y la Agencia Espacial Alemana (DLR). DLR proporciona el telescopio, el mantenimiento programado para el avión y otros apoyos para la misión. El Centro de Investigación Ames de la NASA, en el Silicon Valley de California, administra el programa SOFIA, la ciencia y las operaciones de la misión en cooperación con la Asociación de Universidades de Investigación Espacial, con sede en Columbia, Maryland, y el Instituto SOFIA alemán de la Universidad de Stuttgart. El avión es mantenido y operado por el Armstrong Flight Research Center Building 703 de la NASA, en Palmdale, California.

Las preguntas de la prensa sobre el despliegue de SOFIA en el sur deben enviarse a la sala de prensa de la NASA en Ames.

SOFIA: Science Above the Clouds

This short video gives you a glimpse at our flying observatory – the Stratospheric Observatory for Infrared Astronomy, or SOFIA – and the science we do from the skies.

SOFIA is a joint project of NASA and the German Space Agency at DLR. DLR provides the telescope, scheduled aircraft maintenance, and other support for the mission. NASA’s Ames Research Center in California’s Silicon Valley manages the SOFIA program, science, and mission operations in cooperation with the Universities Space Research Association, headquartered in Columbia, Maryland, and the German SOFIA Institute at the University of Stuttgart. The aircraft is maintained and operated by NASA’s Armstrong Flight Research Center Building 703, in Palmdale, California.

Tilted Galaxy Turns Studies Topsy-Turvy

by Anashe Bandari

Because the effects of observing a galaxy at an angle are complex, spiral galaxies are much easier to study if their orientation is just right – that is, if telescopes can see them face-on rather than at an angle. Now, observations of Caldwell 30, a spiral galaxy with a similar size and shape to our own, have begun to identify these effects.

NGC 7331 galaxy with circles showing the different sections of the galaxy.
Because NGC 7331 is viewed at an incline, there is a marked difference in the ionized carbon emission observed in different parts of the galaxy, depending on our observing perspective. Emission from within the delineated donut shape varies between the side of the galaxy that is closer to us (lower sector) and its far side (upper sector). This shows that viewing perspective has an effect on the origin of the ionized carbon emission observed. Credit: Adam Block/Mount Lemmon SkyCenter/University of Arizona/Sutter et al., 2022

Jessica Sutter and Dario Fadda looked at the various factors that affect the detection of the ionized carbon emission – an important measurement in astronomy, as it can reveal star formation, cooling, and more – from Caldwell 30, including its angle of inclination. Because ionized carbon is so ubiquitous in astronomy, identifying its source ensures its proper usage.

“Knowing where the ionized carbon emission is coming from – whether photodissociation regions, or ionized hydrogen regions, or diffuse ionized gas – is going to affect how we might use it to trace molecular gas, star formation, or photodissociation conditions,” Sutter said. “Our observing angle may have an effect.”

From our point of view on Earth, Caldwell 30 is inclined at about 72 degrees. As a result of this inclination, Sutter and Fadda found the observed fraction of ionized carbon varies depending on which side of the galaxy is being looked at.

“That was both unexpected and semi-novel,” said Sutter, adding that it should be a significant consideration for researchers going forward, especially if they aren’t sure of the inclination of the galaxy they are studying. If the viewing angle is unknown, the contribution from various ionized carbon emission sources is hard to determine, impacting how the emission can be used in analyses.

As the only observatory capable of studying ionized carbon from within the Earth’s stratosphere for nearby galaxies, SOFIA is uniquely qualified to help clarify the role of a galaxy’s angle in its ionized carbon emission.

“One of the reasons more people haven’t looked at ionized carbon emission is because…you can’t do it from the ground. You need something at least from the stratosphere, if not in space,” Sutter said. “With SOFIA, we have some more opportunities to get these full maps.”

Looking ahead, the pair hopes to expand their analysis, which was recently published in The Astrophysical Journal, by mapping the ionized carbon emission from an additional set of galaxies using SOFIA.

SOFIA is a joint project of NASA and the German Space Agency at DLR. DLR provides the telescope, scheduled aircraft maintenance, and other support for the mission. NASA’s Ames Research Center in California’s Silicon Valley manages the SOFIA program, science, and mission operations in cooperation with the Universities Space Research Association, headquartered in Columbia, Maryland, and the German SOFIA Institute at the University of Stuttgart. The aircraft is maintained and operated by NASA’s Armstrong Flight Research Center Building 703, in Palmdale, California.