NASA’s AIM Mission Ends Operational Support

The AIM spacecraft is in the foreground of the image, and it is set against an artistic sunset in the backdrop. Earth is below the spacecraft and is obscured by clouds and haze. The spacecraft is a hexagonal shape and orange and yellow in color. Its mechanical components are shown in gray below the main body of the spacecraft. the solar arrays are affixed to the back of the spacecraft creating the effect of wings on a bird as it soars through the air.
Artist’s concept of the AIM spacecraft in orbit around Earth. Credits: NASA

After more than 15 years of scientific discoveries, NASA’s Aeronomy of Ice in the Mesosphere, or AIM, spacecraft is no longer supporting operations after experiencing issues with its battery.

AIM’s batteries initially started to decline in 2019, but the Earth-studying spacecraft continued to return a significant amount of data. Now, with further decline in the battery power, the spacecraft currently is not able to receive commands or collect data.

Launched in 2007, AIM has studied polar mesospheric clouds, also known as night-shining or noctilucent clouds, from its orbit 312 miles above Earth. Its data have changed scientists’ understanding of the causes and formation of the clouds, leading to 379 peer-reviewed scientific papers. AIM – originally slated to operate for two years – completed its primary mission in 2009 and has been in extended operations status since then.

The AIM team will continue to monitor AIM’s communication for two weeks in case the spacecraft is able to reboot and transmit a signal.

By Mara Johnson-Groh
NASA Goddard Space Flight Center, Greenbelt, Md

A Powerful Solar Eruption on Far Side of Sun Still Impacted Earth

A massive eruption of solar material, known as a coronal mass ejection or CME, was detected escaping from the Sun at 11:36 p.m. EDT on March 12, 2023.

The CME erupted from the side of the Sun opposite Earth. While resarchers are still gathering data to determine the source of the eruption, it is currently believed that the CME came from former active region AR3234. This active region was on the Earth-facing side of the Sun from late February through early March, when it unleashed fifteen moderately intense M-class flares and one powerful X-class flare.

Based on an analysis by NASA’s Moon to Mars Space Weather Office, the CME was clocked in traveling at an unusually fast 2,127 kilometers (1,321 miles) per second, earning it a speed-based classification of a R (rare) type CME.

A simulation of the CME below shows the blast erupting from the Sun (located at the middle of the central white dot) and passing over Mercury (orange dot). Earth is a yellow circle located at the 3 o’clock position.

A circular diagram shows a swirl of colors. The Sun is represented at the center and the planets and several spacecraft are depicted around it. Suddenly, a blast of darker colors moves away from the central dot, representing the powerful CME moving at high speeds.
Credit: NASA’s M2M Space Weather Office

The eruption is likely to have hit NASA’s Parker Solar Probe head-on. The spacecraft is currently nearing its 15th closest approach of the Sun (or perihelion), flying within 5.3 million miles (8.5 million kilometers) of the Sun on March 17. On March 13, the spacecraft sent a green beacon tone showing the spacecraft is in its nominal operational mode. The scientists and engineers are awaiting the next data download from the spacecraft, which will occur after the close approach, to learn more about this CME event and any potential impacts.

The eruption is known as a halo CME because it appears to spread out evenly from the Sun in a halo, or ring, around the Sun. Halo CMEs depend on the observer’s position, occurring when the solar eruption is aligned either directly towards Earth, or as in this case, directly away from Earth. This expanding ring is apparent in the view from NASA/ESA’s Solar and Heliospheric Observatory, or SOHO, spacecraft shown below. SOHO observes the Sun from a location about 1 million miles closer to the Sun along the Sun-Earth line. In SOHO’s view, the Sun’s bright surface is blocked to reveal the much fainter solar atmosphere and erupting solar material around it. The bright dot on the lower right side of the image is Mercury.

In this image from a NASA spacecraft, the Sun's solar wind streams out from a central point in the image (covered to block the Sun's bright light). Suddenly a blast of gaseous looking white material is ejected from all around the blocked portion. A bright light point -- Mercury -- is visible off to the lower right
Credit: NASA/ESA/SOHO

Even though the CME erupted from the opposite side of the Sun, its impacts were felt at Earth. As CMEs blast through space, they create a shockwave that can accelerate particles along the CME’s path to incredible speeds, much the way surfers are pushed along by an incoming ocean wave. Known as solar energetic particles, or SEPs, these speedy particles can make the 93-million-mile journey from the Sun to Earth in around 30 minutes.

Though SEPs are commonly observed after Earth-facing solar eruptions, they are less common for eruptions on the far side of the Sun. Nonetheless, spacecraft orbiting Earth detected SEPs from the eruption starting at midnight on March 12, meaning the CME was powerful enough to set off a broad cascade of collisions that managed to reach our side of the Sun. NASA’s space weather scientists are still analyzing the event to learn more about how it achieved this impressive and far-reaching effect.

The Sun Spot blog logo

NASA’s IBEX Spacecraft Resumes Science Operations

This artist’s concept shows the IBEX spacecraft between Earth and the heliosphere. Credit: NASA

NASA’s Interstellar Boundary Explorer (IBEX) is fully operational after the mission team successfully reset the spacecraft on March 2.

To take the spacecraft out of a contingency mode it entered last month, the mission team performed a firecode reset (which is an external reset of the spacecraft) instead of waiting for the spacecraft to perform an autonomous reset and power cycle on March 4. The decision took advantage of a favorable communications environment around IBEX’s perigee – the point in the spacecraft’s orbit where it is closest to Earth.

After the firecode reset, command capability was restored. IBEX telemetry shows that the spacecraft is fully operational and functioning normally.

Launched on Oct. 19, 2008, IBEX is a small explorer NASA mission tasked with mapping the boundary where winds from the Sun interact with winds from other stars. IBEX, the size of a bus tire, uses instruments that look toward the interstellar boundary from a nine-day orbit around Earth.