Is a spacewalk still a spacewalk if it's undersea?

The answer is yes if you consider that three NASA astronauts are practicing future off-planet spacewalks undersea this week off the Florida coast.

 

The three astronauts, joined by a Constellation Program engineer and a team of diving “buddies,” are performing engineering evaluations for next spring’s NEEMO 14 mission.

 

The NASA Extreme Environment Mission Operations 14 (NEEMO 14) was slipped from October to allow the National Oceanic and Atmospheric Administration (NOAA) to complete a safety review of its Aquarius underwater laboratory.

 

Aquarius, located three miles off Key Largo in the Florida Keys National Marine Sanctuary, is the world’s only permanent underwater habitat and laboratory

 

The team of NASA divers and astronauts spent last week doing preliminary work at a Key Largo, Fla., base.  This week the team will perform some engineering evaluations on a low-fidelity, full scale mock-up of the Altair lunar lander positioned next to NOAA’s lab. 

 

The engineering tests include 1/6 g operational evaluations of unloading a mock-up of the Lunar Electric Rover off the lander platform, rover hatch size evaluations, and incapacitated crew rescue operations.

 

Veteran space shuttle pilot Eric Boe is leading the NASA team. Joining Boe are veteran astronauts and aquanauts Mike Gernhardt and Richard Arnold, along with Lunar Electric Rover deputy project manager Andrew Abercromby.

 

The rover and lander mockups rival the size of the vehicles NASA is designing for future planetary exploration. The lander mockup is wider than a school bus is long and almost three times as high, measuring 45 feet wide and 28 feet high, including a six-foot high crane. The rover mockup is slightly larger than a full-size SUV, standing eight feet tall and 14 feet long.

 

Boe completed his first space flight as pilot on STS-126 in November 2008 and is assigned to pilot the STS-133 mission targeted for September 2010. Gernhardt is a veteran of four space shuttle flights, four spacewalks and two NEEMO missions. Arnold completed two spacewalks during his first spaceflight, the STS-119 mission in March and he was part of the NEEMO 13 mission in August 2007.

 

Andrew Abercromby serves as the deputy project manager and a biomedical engineer for the Lunar Electric Rover project and deputy lead for the Exploration Analogs and Mission Development project. As part of the Human Research Program, he is a project engineer for the Extravehicular Activity Physiology, Systems and Performance project for Wyle Integrated Science and Engineering Group in Houston.  He has extensive experience in planning and executing field test operations including NEEMO and NASA’s Haughton Mars Project, Desert RATS, and the Pavilion Lake Research Project.

  

NEEMO missions are a cooperative project among NASA, NOAA and University of North Carolina at Wilmington the university.

 

 

 

 

Cruising to the Moon

How long does it take humans to travel to the moon? Currently, Constellation is planning for the trans-lunar coast to take no longer than 4 days, or 96 hours. Apollo’s design requirement was for the coast time to range between 60 hours and 100 hours. The actual missions (Apollo 10-17) varied from 72 hours to 83 hours.

So why would it take longer on the future missions? It may not actually. At this point, Constellation is in the requirements definition and preliminary design phase for the lunar exploration portion of the program therefore requirements are set for the most stressing – maximum and minimum – types of conditions.

The trans-lunar cruise duration is a function of the energy or change in velocity (delta-V) applied at the trans-lunar injection, or TLI, burn. The energy requirements for the TLI burn will vary depending on where the planned landing site is located on the moon and when the mission is launched, among other factors. So, if a mission is launched on a more favorable opportunity, less energy will be required for the TLI burn and the trip would be quicker.

Since Constellation is planning for worst-case conditions at this point, the transfer time in the current plan minimizes the amount of propellant, and therefore the mass, required for trans-lunar injection. When Constellation flies actual missions to the moon, there will likely be the same flexibility as Apollo to shorten the duration of the flight toward the moon if it is desirable to do so.

Artist’s concept of NASA’s Orion crew exploration vehicle and Altair Lunar Lander while the Earth departure stage performs the trans-lunar injection burn (JSC2009-E-031248).

Orion On the Move: Florida to Texas

An Orion mockup has hit the road again for another round of testing. The full-scale vehicle is taking part in a series of tests known as PORT (Post-landing Orion Recovery Tests) to study the environment for astronauts and recovery crews after an Orion ocean splashdown. We invite you to come out and check out America’s next crew exploration vehicle during several stops on its Florida to Texas trek:

 

— Challenger, Center, Tallahassee, Fla., Mon., Aug. 10, noon to 3 p.m. EDT

— Naval Aviation Museum, Pensacola, Fla., Tues., Aug. 11, 9 a.m. to 3 p.m. CDT

— StenniSphere, NASA’s Stennis Space Center, Miss., Wed., Aug. 12, 10 a.m. to 2:30 p.m. CDT.

— Museum of Natural Science, Jackson, Miss., Aug. 13, 8 a.m. to 1 p.m. CDT

— NASA’s Johnson Space Center, Houston, Texas, Aug. 14, 3 p.m. CDT through Aug. 17, approximately 9 a.m. CDT

 

Check out a photo from the last test and get a preview of what you can see this week (minus the water).

Orion at Port Canaveral, Fla.

 

You can read more in the news release: https://www.nasa.gov/home/hqnews/2009/aug/HQ_09_183_Orion_on_the_Move.html

 

You can also follow Orion on twitter: www.twitter.com/Orioncrewmodule

Orion Crew Modules from Coast to Coast

Here’s a look at just a few of the crew modules being developed around the country for Constellation’s Orion crew exploration vehicle.

Orion PA-1 flight test crew module at Dryden

Surrounded by work platforms at NASA’s Dryden Flight Research Center, the full-scale Orion crew module is undergoing preparations for the first flight test of Orion’s launch abort system, called Pad Abort 1 (PA-1), targeted for November at White Sands Missile Range, N.M. The test module has recently completed a series of high-intensity acoustic tests, simulating the noise made by the launch abort system motors, to evaluate how high frequency vibrations could affect the module’s structure or its electronics. Image credit: NASA/Tony Landis

 

The boilerplate Orion crew module for the PA-1 flight test is tilted on jacks during weight and balance testing at NASA Dryden in late 2008. This module is now at White Sands Missile Range, N.M. to help teams prepare for PA-1. Image credit: NASA/Tony Landis

 

Orion crew module at KSC

In the Operations and Checkout Building’s high bay at NASA Kennedy Space Center, Fla. technicians finished installing panels on the crew module mockup that simulate the spacecraft structure. The Orion crew module mockup at KSC is paving the way for Orion’s flights into space as teams simulate work to be done in the manufacturing and assembly processes. Image Credit: NASA/Kim Shiflett

 

Orion ground test article at Michoud

Orion prime contractor, Lockheed Martin, continues construction of the ground test article at the NASA Michoud Assembly Facility in New Orleans, La. This ground test article will serve as a production pathfinder to validate the flight vehicle production processes and tools. When completed, the module will be tested on the ground in flight-like environments, including static vibration, acoustics and water landing loads.  Image Credit: Lockheed Martin

 

Post-landing Orion Recovery Test crew module at KSC

After completing its at-sea testing in the Atlantic Ocean, the Post-landing Orion Recovery Test (PORT) module is at KSC awaiting preparations for the next step. The next round of tests involve installing seats and simulated hardware inside the module for astronauts to practice getting out while in a wave-simulating pool in Aberdeen, Md. Image Credit: NASA

 

Orion Exploration Development Lab crew module

Lockheed Martin engineers sit inside a full-scale, low fidelity mockup at the Exploration Development Lab in Houston where engineers and astronauts work together on human factors studies such as vehicle fit, form and function as well as emergency ingress and egress exercises. Image Credit: Lockheed Martin