J-2X Progress: Current Status, The End of 2012

Once upon a time, not that long ago, people used to communicate by what were known as “letters.”  These were written documents.  Yes, actual hardcopy, paper items. And they were often transcribed by hand or, sometimes, generated on what was known as a “typewriter,” which was basically a manual, analog printer with no I/O port beyond direct keypad entry.  These “letters” were sent to their intended recipients using a small denomination currency with an adhesive backing that is recognized for exchange by only one quasi-governmental agency. 


I know that some of you may have doubts that people communicated with each other in primitive ways prior to email and text messages, but witness the cultural clues from the 1961 song illustrated above. 

It was always believed that the toughest letter to receive was the dreaded “Dear John” letter (as in, “Dear John, I’ve fallen in love with someone else…”).   However, I think t’at the hardest letter to write is the “it’s been awhile” letter.  This one starts, “Well, it’s been awhile since I’ve written.  Sorry.”  This blog article is just like one of those letters.  It’s been awhile since I’ve written one of these articles and I’m sorry about that.  I could give you a big long list of all the really, really serious stuff that I’ve been doing instead, but that’s just a bunch of feeble excuses so I’ll keep them to myself.  Instead, I’ll just get down to business and give you a status report on the J-2X development effort.

Engine #1 (E10001) Testing is Complete!
Over fourteen months and across the span of twenty-one tests, more than 2,700 seconds of engine run time was accumulated and recorded, including nearly 1,700 seconds of hot fire with an instrumented nozzle extension.  With this engine we achieved stable 100% power level operation by the fourth test and full mission duration by the eighth test.  While we don’t have any official statistics on the issue, most folks around here believe that we accomplished those milestones faster than has ever been done on a newly developed engine.  We learned how to calibrate the engine and the sensitivities that the engine has to different calibration settings, i.e., orifice sizes and valve positions.  We were able to estimate performance parameters for the full-configuration of the engine at vacuum conditions and the calculations suggest strongly that all requirements are met by this design and met with substantial margin.  This is significant considering that we’ve long considered our performance goals to be pretty aggressive.  Well, our little-engine-that-could showed us that it did just fine with those goals, thank you very much.

One of the truly unique and successful aspects of the E10001 testing was the testing of a nozzle extension.  This component is a key feature that allows J-2X performance to far exceed that of the J-2 engine from the Apollo Program era.  While it is true that we cannot test the full-length nozzle extension without a test stand that actively simulates altitude conditions, we did test a highly instrumented “stub” version that allowed us to characterize the thermal environments to which the nozzle is exposed during engine hot fire and it demonstrated the effectiveness and durability of the emissivity coating that was used.  This stub-nozzle configuration is actually the current baseline for the in-development Space Launch System vehicle upper stage.

Another key success for E10001 was the demonstration of both primary and secondary power levels with starts and shutdowns from each power level and with smooth in-run transitions back and forth between them.  That smoothness was thanks, in part, to demonstrating our understanding of the control of the engine.  From the very first test it was clear that we understood pretty well how to control the engine in terms of proper control orifices for the various operating conditions.  What we did not entirely understand — in other words the fine-tuning details — we successfully learned via trial-and-error throughout the E10001 test series.  All of this learning has been fed back into further anchoring our analytical tools and models so that we can move forward with J-2X development with a great deal of confidence.

Okay, so that’s a brief description of just some of the good stuff.  We had lots and lots of good stuff with the E10001 testing, far more than just that I’ve discussed here (see previous blog articles).  The somewhat unfortunate part was the way in which the E10001 test series came to an end.  On test A2J021, we had a disconnection between the intent for test and the detailed planning that led to the actual hardware configuration we ran for the test.  That disconnection led to an ill-fated situation.  Let me explain…

The J-2X gas generator has ports into which solid propellant igniters are installed.  These igniters are like really high-powered Estes® rocket motors that light off when supplied with a high-energy electrical pulse.  The flame from the igniter lights the fire of the hydrogen-oxygen mixture during the engine start sequence.  It’s essentially the kindling for the fire of mainstage operation.  The igniters perform this function at a very specific time during this sequence.  If you try to light the fire too early, then you may not have enough propellant available in a combustible mixture so you get a sputtering fire.  If you try to light too late, then you may have too much propellant built up such that rather than getting a good fire, you get an explosion instead.  But here’s a key fact: You have to plug them in or they don’t work.

Have you ever stuck bread in the toaster, pushed down the plunger, gone off to make the coffee, and come back only to find that your darn toaster is broken?  You curse a little because you’re already late for work and this is the last darn thing you need.  You would think that somebody somewhere could make a toaster that lasts more than six months or a year or whatever.  For goodness sake!  We put a man on the moon and yet we can’t … oh, wait … um … ooops, it’s not plugged in.  My bad.

In a nutshell, that’s what happened on test A2J021.  The electronic ignition system sent the necessary pulse, but because of the uniqueness of our testing configuration as opposed to our flight configuration the wires carrying the pulse weren’t hooked up to the little solid propellant igniters in the gas generator.  In the picture below you can see the external indication that something was not entirely good immediately after the test.  The internal damage was more extensive to both the gas generator and the fuel turbopump turbine.

Many years ago, I met an elderly engineer who was still on the job well into his 80’s because he loved his work.  His entire career had been dedicated to testing.  He’d actually been there, out in the desert, in the 1940’s testing our very earliest rockets as part of the Hermes Project.  One day, they had a mini disaster on the launch pad.  He told me that the rocket basically just blew up where it sat.  Boom and then a mess.  And, it was his job to assemble the test report.  Being a conscientious, ambitious, young engineer, he recorded the facts and offered a narrative abstract and extensive, annotated introduction that categorized the test as, well, a failure.  Not long after submitting his report, one of the senior German engineers in the camp came into his office, put the test report down on the desk, and said that the tone of the report was entirely wrong.  He said, “Every test report should begin with: ‘This test was a success because…'”  The purpose of testing is to gather data and learn.  If you learn something, then your test was, by definition, a success on some level.  I’ve tried very hard to remember this very important bit of wisdom.

So, A2J021 was a success because we learned that we had some deficiencies in our pre-test checkout procedures.  It was a success because it was an extraordinary stress test on the gas generator system.  No, it didn’t recover and function properly, but neither did the engine come apart.  While that might seem like a minor detail, when you’re hundred miles from the surface of the earth, you would much rather have a situation where an abort is possible than a failure that could result in collateral vehicle damage and make safe abort impossible.  We have a stout design.  Good.  Also, this test failure was due to a unique ground test configuration.  In flight, it’s not really plausible just because we would never fly in this configuration.

So, E10001 completed its test program with a bang.  Kinda, sorta literally.  But it was nearly the end of its design life anyway, so we didn’t lose too many test opportunities, and, as I said, even with test A2J021 the way it happened we learned a great deal.  Overall, the E10001 test series was an outrageous success.  Rocketdyne, the J-2X contractor, ought to be darn proud and so should the outstanding assembly and test crews at the NASA Stennis Space Center and our data analysts here at the NASA Marshall Space Flight Center.  Bravo guys!  Go J-2X!

Power-Pack Assembly 2 (PPA-2) Testing is Complete!
Over ten months and across the span of thirteen tests, nearly 6,200 seconds of engine run time was accumulated and recorded on the J-2X Power Pack Assembly 2.  That’s over 100 minutes of hot fire.  Three of the tests were over 20 minutes long (plus one that clocked in at 19 minutes) and these represent the longest tests ever conducted at the NASA Stennis Space Center A-complex.  But more than just length, it was the extraordinary complexity of the test profiles that truly sets the PPA-2 testing apart.

Because PPA-2 was not a full engine with the constraints imposed by the need to feed a stable main combustion chamber, and because we used electro-mechanical actuators on the engine-side valves and hydraulic actuators on the facility side valves, we could push the PPA-2 turbomachinery across broad ranges of operating conditions.  These ranges represented extremes in boundary conditions and extremes in engine conditions and performance.  On several occasions we intentionally searched out conditions that would result in a test cut just so that we could better understand our margins.  As the saying goes: It’s only when you go too far do you truly learn just how far you can go.  We successfully (and safely) applied that adage several times.  In short, we gathered enough information to keep the turbomachinery and rotordynamics folks blissfully buried in data for months and months to come. 

On an interesting and instructive side note, the PPA-2 testing also showed us that we needed to redesign a seal internal to the hydrogen turbopump.  In the oxygen turbopump, you have an actively purged seal between the turbine side and the pump side.  After all, during operation you have hydrogen-rich hot gas pushing through the turbine side and liquid oxygen going through the pump side.  You obviously don’t want them to mix or the result could be catastrophic.  That’s why we have a purged seal.  But for the hydrogen turbopump you don’t have such an issue.  During operation, at worst should the two sides mix you could get some leakage of hydrogen from the pump side into the turbine side that is already hydrogen rich.  In order to maintain machine efficiency, you don’t want too much leakage, but a little is not catastrophic (and can be used constructively to cool the bearings).  What could be dangerous at the vehicle level, however, is if you have too much hydrogen floating around prior to liftoff.  This is especially true for an upper-stage engine like J-2X that’s typically sitting within an enclosed space until stage separation during the mission.  You could have the engine sitting on the pad for hours chilling down and filling the cryogenic systems and you don’t want gobs and gobs of hydrogen leaking through the turbopump since any leakage ends up within the closed vehicle compartment housing the engine.  That’s just asking for an explosion and a bad day.

To avoid this, within the J-2X hydrogen turbopump we have what is called a lift-off seal.  And, as the name applies, it’s a seal that actively lifts off when we’re ready to run the engine.  When the engine is just sitting there chilling down, not running, with liquid hydrogen filling the pump end of the hydrogen turbopump, the seal is, well, sealed.  Then, when we’re ready to go, it unseals and allows the turbopump to operate nominally.

During the PPA-2 test series we found that we formed a small material failure within the actuation pieces for our lift-off seal.  Then, upon analysis of the test data and a reassessment of the design, we figured out what was most likely the cause and Rocketdyne proposed a redesign to mitigate the issue.  Again, going back to that important piece of wisdom: This testing was a success because, in part, we learned that we needed a slight redesign of the lift-off seal.  That’s the whole purpose of development testing!  Everything always looks great when it’s just in blueprints.  It’s not until you hit the test stand do you truly learn what’s good and what need to be reconsidered.  In the end, this sort of rigor and perseverance is what gives you a final product that you feel good about putting in a vehicle carrying humans in space.  And that, truly, is what it’s all about.

As with E10001, the PPA-2 test series was simply an outrageous success.  Rocketdyne should be proud and so should the outstanding assembly and test crews at the NASA Stennis Space Center and the data analysts at the NASA Marshall Space Flight Center.  Bravo guys!  Go J-2X!

Engine #2 (E10002) Assembly is Underway
Our next star on the horizon is J-2X development Engine 10002.  It is being assembled right now, as I’m typing this article.  It is slated for assembly completion in January 2013 and it will be making lots of noise and very hot steam in the test stand soon after that.  While our current plans are to first test E10002 in test stand A2, we will later be moving it to test stand A1.  This, then, will be the first engine then to see both test stands.  The more important reason for the A1 testing, however, is because that will give us the opportunity to hook up some big hydraulic actuators and gimbal the engine, i.e., make it rock and tilt as though it were being used to steer a vehicle.  Now that will be some exciting video to post to the blog!  I can’t wait.

 
Happy New Year!
So, this has been my “it’s been awhile” letter.  Hopefully this will bring everyone up to speed with where we stand with J-2X development.  In my next article, I will share with you some of what’s been keeping me from my J-2X article writing over the last several months.  And, hopefully, it won’t be several months in the making.  So, farewell for now and Happy New Year!  On to 2013 and another great year full of J-2X successes.  Go J-2X!

Welcome to the J-2X Doghouse: Twist and Shout…and Steering

Put a little kid into the driver’s seat of a (safely parked) car and what’s the first thing that they do?  They grab the steering wheel and twist it back and forth.  Twisting the steering wheel back and forth is just about the most intuitive, intrinsic — practically instinctive — sense of “driving” that I can imagine.  Even the handlebars of a bicycle or a motorcycle fit into the same idea.  Can you think of driving a car or a boat or, well, anything, without a steering wheel (of some sort)?  It’s tough, isn’t it?  


Okay, now think of a launch vehicle blasting off the pad and upwards heading towards the sky.  Other than for some extreme, emergency conditions, there is not anything that stands in for the steering wheel on a launch vehicle during ascent.  The process of steering the vehicle requires such precision and responsiveness that it has to be automated.  Sorry Buck Rogers, the computer is flying the vehicle.  But, even without a steering wheel, per se, how does steering happen?

With a car, you point the front wheels and, thanks to friction between the tires and the road, you get pulled (or pushed for the sports car purist and NASCAR fans) in that direction.

With a boat, you use a rudder so that the water pushing against it points the boat in the direction you want to head.

With an airplane, you have to use a combination of aerodynamic surfaces since you’re now dealing with steering in three dimensions, not just two as with an automobile or a boat.  But the idea is basically the same: the air through which you’re moving pushes against the aerodynamic surfaces and points the plane in the direction you need to go.

What do you do with a launch vehicle?  Not long after the first couple minutes of flight, you’re so high in the atmosphere that there’s not enough air to effectively use aerodynamic surfaces.  In other words, you don’t have a road and a rudder won’t work.  So what do you use when you don’t have anything against which to push?  That’s right: a rocket!

You could, if you chose to do it this way, use dedicated steering rockets.  We do use these when we’re in space and we typically call them “retrorockets” or “reaction and control” rockets.  But during the ascent, you already have a big rocket engine pushing you along so you might as well use that if you can, but to do so, you need to twist it around…


[Yes, I can’t help myself.  I had to make a musical reference.  “Twist and Shout” (written by Phil Medley and Bert Russell) was originally recorded by the Top Notes, then the Isley Brothers, and, eventually by the Beatles (as so memorably replayed many years later in “Ferris Bueller’s Day Off”).  Lots and lots of people have done versions of this song, but probably the most bizarre was Mae West — yes, THAT Mae West — when she was 72 years old.  Who knew?]

What do I mean with regards to twisting a rocket engine?  Here’s a video of what we call “gimballing” an engine on the test stand, in this case a Space Shuttle Main Engine (video provided by my friend and coworker Rick Ballard from his Liquid Rocket Engine class materials):




So, for a launch vehicle during ascent, you accomplish steering by pointing the thing pushing you, i.e., your main propulsion rocket engine.  That’s a cool video, huh?  But how do we accomplish that?  The movement itself is provided by hydraulic actuators.  These are push/pull devices driven by fluid pressure.  The brakes on your car are hydraulically actuated, for example.  Another example of hydraulic actuators are those lifts at the garage they use to pick your car up off the ground.  In other words, they can be very powerful devices.  You can do a quick web search on “hydraulic actuators” and find all kinds of pictures and articles and even sales pitches from manufacturers.  


 
On the rocket engine we put just two connection points for the actuators at ninety degrees apart from each other.  This gives us what you can think of as full, two-dimensional coverage.  If you remember back to math class, everything on a flat page can be located via X-Y coordinates.  Thus, one actuator provides the X-direction and the other provides the Y-direction.  And, with that, we can point the engine to any location within a given, limited range of movement.

At the top of the engine, in order to allow the movement, we put in what amounts to a universal joint.  It’s called the “gimbal bearing” and it’s like the ball-and-socket joint in your shoulder except that this joint has to carry the full thrust load of the engine while maintaining its flexibility.  Because of the conditions seen by the engine, you can’t use any typical lubrication like grease or anything like that.  Instead, we use a Teflon-impregnated fabric layer.


I like the picture above showing several guys working with typical engine gimbal bearings.  In the picture you can get a sense of how beefy these things are when assembled and you can clearly see the “ball” part of the ball-and-socket joint. 

Have we gotten to the really, really neato part yet?  Yes, we have (in my humble opinion).  Here it comes.  How is it that we can move around the engine?  I mean, besides the big ball-and-socket joint at the top that is meant to move around, all the rest of it is assembled out of all kinds of stiff metal pieces, right?  It’s not like you can stick cryogenic propellants through a flexible rubber garden hose.  So how do we get the compliance in the rest of the engine components that allow for the movement the actuators and gimbal bearing are providing?  With no compliance, the actuators would push and pull, and, assuming that they were powerful enough to do damage (and they usually are), the engine ducts would buckle and crush and, frankly, you’d have a crumpled mess.  What we do then is build the compliance into the engine with specific parts to provide this functionality.  This is accomplished in different ways on different engines.  Below is how this compliance is accomplished for J-2X for the main propellant lines:


That pretty piece of hardware is a propellant inlet duct.  In fact, that picture is of the first new propellant inlet duct fabricated for a J-2, J-2S, or J-2X engine in forty years.  This new duct is like the heritage design but better, safer, more robust.  It is an extremely difficult piece of hardware to make in that it involves some very highly specialized welding techniques.  So a big shout-out goes to Pratt & Whitney Rocketdyne and the guys on the shop floor.  Way to go guys!


How does it work?  The sections with the convolutions are called bellows.  Above is a cut-away of a metal bellows made by the same company as our propellant inlet duct, Gardner Bellows Corporation, but not our same design.  The bellows take advantage of the way that metal can act like a spring.  If it doesn’t get bent too far, the metal will bounce back undamaged.  These dozens of convolutions in the bellows allow for enough movement that the whole thing acts like a stiff spring.  The hinged structures on the sides hold the bellows together and constrain the springy parts and make sure that they stay in their groove (so to speak). 

The next natural question about this duct is this:  Why does it appear to be in two pieces, an upper bellows and a lower bellows?  The answer is that it isn’t in two pieces; it’s in three pieces.  In between the upper bellows and the lower bellows is a third set of bellows that you can’t see very well and that’s because they’re really flat.  This is the torsional bellows and it provides for a slight twist between the upper and lower sections.  When you’re gimballing the engine, not only do you need these ducts to bend, you also need a bit of twist…


I think that the torsional bellows is even cooler than the bending bellows.  Have you ever tried to twist a long piece of wood, like maybe an eight-foot-long, one-by-two strip?  The longer the piece, the easier it is to get a few degrees of twist.  A short piece of wood, even with the same cross-sectional dimensions, won’t allow for as much twist.  There is an “allowable twist per unit length” thing going on: longer = more twist, shorter=less twist.  Okay, now assume that the same is true for a metal pipe.  If you have a very long metal pipe and you apply a twisting force to it (torsion), you can get some movement, more movement than you’d get with a short pipe.  But there’s no space on a rocket engine for a very long pipe, so how do you allow for some twist?  What we do is collapse the long pipe into shortness by making it into a very tight accordion-like package.  In other words, we add convolutions kind of like the bending bellows, but make them very tight, very flat.  So, all of the metal “length” is still there, just in a really compact, squashed package.  It kind of feels like cheating, somehow, but it works.  See?!  That’s just neato!

In addition to the big ducts, the propellant ducts, you also have to take into account any other connections between the engine and the vehicle stage.  If you think back to the article about vehicle integration, you’ll remember that we’ve got pneumatic lines and propellant pressurization lines and helium spin start lines connecting the engine to the stage.  In all of these lines we have to make provisions for compliance to engine gimballing motion.  As you can imagine, this makes the design for these pieces not simple.  But nobody ever said that rocket engines were supposed to be simple.  Also note that different rocket engines use different approaches for achieving the compliance necessary to accommodate gimballing, but they almost always use “springy” metal bellows in some sort of configuration.

The first J-2X engine that will see gimballing in the test stand will be development engine E10002.  That should be happening later this year.  Stay tuned.  I’ll certainly be posting some gee-whiz video after that happens.  Go J-2X!

J-2X Progress: Mission-Duration Test

Five hundred seconds is exactly eight minutes and twenty seconds.  Nope, that’s not rocket science.  But that was what I had to keep in mind as I watched the stopwatch application on my smart phone during the last J-2X test.  Eight minutes and twenty seconds.  That seems like a really long time when you’re counting every second.

Let me set the scene.

At the NASA Stennis Space center you have collected the directors from seven of the ten NASA field centers around the country.  You have representatives from the NASA headquarters in Washington, DC.  You have a live feed being picked up by NASA TV and broadcast into the living rooms of thousands or millions of dedicated NASA TV junkies.  You have dignitaries in suits and technicians and test conductors in jeans and Hawaiian shirts (test-day tradition), reporters with notepads and cameras from every paper and television station in the greater New Orleans and southern Mississippi area, and, sitting in his ceremonial throne, the Grand High Exalted Mystic Ruler of the International Order of Friendly Sons of the Raccoons.

Well, okay, that last part about the Exalted Mystic Ruler is just fictional (bonus points to anyone who gets the 20th-century cultural allusion without Google help), but that’s the way that it felt.  This was test A2J008, the seventh planned hot-fire test of the very first development engine and it was time to play show-and-tell.

Does everyone remember show-and-tell in elementary school?  You bring in something that you think is neato or special and, by getting up in front of class and talking about it you reveal something about yourself and you accidentally practice public speaking and presentation.  Once, when I was seven years old, I brought in my new baby brother, or, well, my mother did so at my behest.  I wish that I could remember what I said about him.  I imagine it was something like, “He’s short, cranky, and smells funny.”  Today, at least he can say, he’s taller than me.

J-2X is our new baby brother — of a sort to carry forward the analogy — and we’re showing him off to the world.  Through the first six hot fire tests of engine E10001, we accumulated a total of 225 seconds of test time.  For test A2J008, on November 9th, our show-and-tell for the world, we scheduled a test lasting 500 seconds, which is the mission duration requirement for the engine.  Here is what I saw during the test, while holding the stopwatch, standing out in the field in front of the test control center:

Can’t see anything?  Okay, I’ll expand the picture in pieces starting on the left.

This is the hydrogen burn stack.  All of the excess hydrogen coming from the facility or from the engine before, during, and after the test needs to be burned off.  This is all bleed flows and waste flows that you cannot avoid when dealing with a cryogenic propellant.  If you let hydrogen accumulate anywhere around the facility, then “BOOM” you’re eventually going to have an explosion.  Talk to the guys who work out in the test areas and they’ll tell you plenty of tales of such things.  What is amazing as you’re standing out in that field to watch the test is the radiation heat coming off that thing.  It was a chilly day and yet you almost feel like you’re going to end up with a sun-tanned face.  It feels like the sun while you’re on the beach except that as warm is it makes your front side, your back side is still chilly from the blustery November breeze.  Kind of an odd sensation being both overheated and chilly at the same time.

In the middle of the picture is a sign for anyone who was born without that instinctual reflex for self-preservation.  While it would seem obvious to me to not walk in front of a roaring rocket engine throwing out a plume reaching hundreds of feet in the air, the fact that they have a sign like this suggests to me that for someone, somewhere, at some time, this was not so obvious.  An unfortunate thought…

And, on the right-hand side of the picture, in the distance, is test stand A-2 with the engine firing.  In the middle of the picture below, there is a tiny, very white spot in the middle of the test stand.  That’s the flame coming directly out of the engine nozzle.  In the bottom right corner of the picture below you can just see the edge of one of the liquid hydrogen barges.  For both liquid oxygen and liquid hydrogen, for extended duration tests, the propellant tanks on the test stand are not quite big enough to hold all of the necessary propellant.  So, during the test you actually transfer propellants from these barges into the test stand tanks.  So, the engine is draining the test stand tanks while you are simultaneously re-filling them from the barges.  With all of this going on, you start to appreciate the coordination necessary to pull off one of these tests.

 

When you’re standing there being halfway cooked by the burn stack, several hundred feet away, the roar from the engine is nearly deafening.  Many people wear hearing protection.  Others of us are aging rock-n-roll fans.  I honestly don’t think that anyone gets a complete sense of how powerful these machines are until they see, hear, and feel one of these tests.  All of the performance numbers in the world simply do not have the same visceral impact as when the engine lights and the initial sound wave runs over, around, and through you and you watch the flame bucket fill with billowing, thick, white steam.  Even twenty years after having seen my first test in person, I still cannot help but stand there like a bedazzled goof and say to myself, “Wow.”

Here, below, is a picture of the test from the other side of the stand.  Why is this important (other than the sign on the fence clearly advertising what you’re looking at)?  Because this is the side from which all of the non-NASA folks, some of the NASA dignitaries as well – including an astronaut representative – and the local press corps watched the test.  


So as to not keep you in any more suspense, the test came off perfectly.  The full, planned duration of 500 seconds was achieved thereby effectively tripling out test experience to date.  The coverage on NASA TV was good.  The bigwigs clapped and cheered with infectious excitement right along the rest of us.  And the press corps wore out their thesauruses trying to capture just a slice of the actual experience.  It was a complete success on all fronts.

Congratulations to the Pratt & Whitney Rocketdyne J-2X development team, the NASA SSC test crew, and the NASA Marshall Space Flight Center project management team.  While I had every bit of confidence that we’d be successful, with so many people watching our show-and-tell exercise, those 500 seconds — eight minutes and twenty seconds — ticking away on my stopwatch seemed like a whole lot longer.  Whew! and Yahoo!


 

 

J-2X Extra: Supplier Appreciation

Pssssssst.  Come over here.  Yes, you.  Come on.  Right here.  Lean in real close because I’ve got a secret to share.  A little closer.  Are you ready?  Okay, here it is: rocket engines are complex machines with lots and lots of pieces.

Well, maybe that’s not much of a secret.  Maybe that’s just about as much of a secret as, say, “water is wet.”  But what might not be known too well is how many different people get involved in developing and building a new rocket engine.  Sure, the NASA office is located here at the Marshall Space Flight Center in northern Alabama, and the facility of our prime contractor for J-2X, Pratt & Whitney Rocketdyne is located in Los Angeles, California, and our engine assembly and test facility is at the NASA Stennis Space Center is southern Mississippi, but we engage more of the country than just those three key locations.  The J-2X development effort has 362 different suppliers and vendors in 35 states and 4 in other countries.

Now, we here on the NASA side don’t chose the suppliers for this project.  We sometimes get involved in okaying a supplier for various reasons pertaining to regulations (blah, blah, blah…snore…zzzzzzz…for a really good time, sit down and read the Federal Acquisition Regulation!), but it is primarily the job of our prime contractor to figure out what is needed and to hire appropriately.  It’s just like having a general contractor if you were building a house.  They have connections and know who best to call for the plumbing or the roof or the tiling in the bathroom.

So, we don’t pick ’em, and we certainly don’t endorse anyone over anyone else, but when a company steps forward and does a whiz-bang job for us – and therefore for our space exploration mission – I think that they deserve “atta-boy” recognition.  Much earlier in this blog series, I included a picture taken at the facility of Cain Tubular Products in St. Charles, Illinois.  They are a relatively small company that supplies our heat exchanger coils and they’ve done a whiz-bang job for us.  We have other suppliers that are Fortune 100, multinational corporations like, for example, Honeywell International that provides the J-2X engine controller and several of the valve actuators.  They too generally do a whiz-bang job for us. 

So, here I’m going to shout out an “atta-boy” to another supplier…

Omni Electo Motive Inc. is located in Newfield, New York just outside Ithaca (beautiful country up there).  To give you a general idea of what they do, I will quote their website: “Omni Electro Motive Inc. is one of the world’s premier independent manufacturers of custom manufactured gas turbine blades and vanes for jet engines and gas turbine industries.” 

Well, okay, but it is not only jet engines and gas turbines that have turbine blades, so do rocket engines.  As I’ve discussed before, the power of the engine comes from the power of the turbopumps.  The turbine blades are small airfoils that convert the power of flowing hot, high pressure, high velocity gases into rotational power.  Thus, they are a key component of the engine.  Between the two turbopumps, the J-2X has over 300 turbine blades.  Below is a picture of some turbine blades prior to assembly into the J-2X fuel turbopump.  Each blade is fits snugly like a glove into a disk connected to the rotating shaft of the turbopump so that only the airfoil section is exposed.

These turbine blades not very big (easily fit in the palm of your hand), but they need to be exceedingly well made.  They see extreme environments and undergo extreme loads during engine operation.  In essence, they need to be as flawless as the finest jewels.  That is why it takes a specialized supplier like Omni to do the job.  However, more than just providing excellent products, Omni has engaged with the J-2X development team on the design side through multiple design iterations.  The application of their extensive experience in this specialized field has been positively vital to our success.

Below is a picture of Omni Electromotive Inc. President, Frank Deridder (on the right), receiving a Supplier Appreciation Award from the Pratt & Whitney Rocketdyne J-2X Program Office. 

 

Thank you very much guys for your dedication and for your commitment to excellence.  “Atta-boy” and keep up the good work!

 

Front Row, From Left to Right: Holli Maneval, Adam Kellerson, Donald Koski, Mark Clauson.

Back Row From Left to Right: Ray Hornbrook, Matthew Oelkers, Brian Card, Jamie Brooks, John Case, Steven Vallimont

J-2X Progress: Turbomachinery: One More Pic


The previous article for this blog, the one down below regarding progress with the J-2X turbomachinery, was written about 2 weeks ago.  There is an inherent lag in the process for big articles. That’s just the way things are. So, that being said, I am tossing a supplemental entry on here to provide an update: The turbopumps for Engine 10001 are assembled!

Below is a picture of the Pratt & Whitney Rocketdyne team responsible for assembling the Fuel Turbopump standing around the completed unit. Way to go guys!