Mapping Burned Areas From Southern California’s Bobcat Fire

A damage assessment map showing areas in Angeles National Forest that were likely damaged from the Bobcat Fire on September 7th, 8th, 13th, and 14th. Credits: Alaska Satellite Facility, NASA-JPL/Caltech, European Space Agency, NASA Earth Applied Sciences Disasters Program.
A damage assessment map showing areas in Angeles National Forest that were likely damaged from the Bobcat Fire on September 7th, 8th, 13th, and 14th. Credits: Alaska Satellite Facility, European Space Agency, NASA Earth Applied Sciences Disasters Program. The image contains modified Copernicus Sentinel data (2020), processed by ESA and analyzed by the NASA-JPL/Caltech ARIA team.

As wildfires continue to rage in the western U.S., NASA’s satellites are helping to track the burned areas and map damage in California and beyond.

One of those fires is the Bobcat Fire in Southern California, which has burned over 100,000 acres – making it one of the largest fires in Los Angeles County’s history. The Damage Proxy Map above shows areas in Angeles National Forest that were likely burned from the Bobcat Fire, ranging from moderate (yellow) to severe fire damage (red). Comparing the maps from September 7th, 8th, 13th and 14th shows how the fire spread over the course of the week, and how close the Bobcat Fire came to roads and other infrastructure.

NASA scientists with the Advanced Rapid Imaging and Analysis (ARIA) team at NASA’s Jet Propulsion Laboratory and California Institute of Technology created the maps using satellite data collected before and during the fires.

The NASA Earth Applied Sciences Disasters Program is working to provide maps like this one and other materials to regional agencies – including the California State Guard and the Federal Emergency Management Agency – to improve understanding of the impacts from the western U.S. fires and the potential risks to people, infrastructure, and the environment. Learn more about NASA’s efforts supporting the western U.S. fires on the NASA Disasters Mapping Portal and NASA Disasters website. – Sofie Bates

 

NASA Aids Response to Widespread Flooding in Japan

Map showing areas which are likely damaged in Kumamoto Prefecture, Japan, as of July 6 due to heavy rains. Credits: Earth Observatory of Singapore/NASA-JPL/Caltech/ARIA-SG team

A team working with NASA’s Earth Science Disasters Program has used satellite data to identify hard-hit areas in southern Japan, where days of pounding rain triggered massive floods and mudslides in early July. The map (above, left) shows areas of likely damaged in Kumamoto Prefecture, where rivers burst their banks and swept away homes, bridges, cars, and trees. Color pixels of 30 meters, from yellow to red, indicate increasing ground surface change before and after the event.

The Disasters Program regularly harnesses NASA’s expertise in Earth and space science to help communities around the world plan for and recover from severe disasters. The program is currently working with stakeholders from Sentinel Asia and the Asian Disaster Reduction Center through the International Disasters Charter to quantify flood depth, flood extent, and to identify areas damaged by the flooding.

The Advanced Rapid Imaging and Analysis (ARIA) team at NASA’s Jet Propulsion Lab in Pasadena, California, collaborated with the Earth Observatory of Singapore on the map using synthetic aperture radar data acquired by the Japan Aerospace Exploration Agency’s ALOS-2 satellites.

 

NASA Aids in Mapping Michigan Floods

A preliminary Flood Proxy Map shows in light blue areas that are likely flooded as of May 20 in Midland City, Michigan. Credits: NASA/ARIA-JPL/NCU/Planet Labs

Heavy rainfall starting on May 17 caused significant flooding in Michigan’s Midland County. The governor of Michigan declared a state of emergency and ordered more than 10,000 residents to evacuate. The floods resulted in the failure of the Edenville Dam the evening of May 19 and the Sanford Dam several hours later, causing additional flooding around the Tittabawassee River region.

A team with NASA’s Earth Science Disasters Program supplied a “flood proxy map” (above) based on satellite observations to the U.S. Air Force and the Swiss Re Group insurance company to aid in their assessments. The map shows the area on May 20 and provides information on flooding and likely areas of additional flooding.

The Disasters Program continues to monitor the situation to determine which additional NASA resources and capabilities may be available to support the risk management of this event.

NASA regularly leverages the power of our views of Earth from space and research aircraft to assist communities around the world as they plan for and recover from severe, often life-threatening, disasters. Data from NASA’s robust constellation of satellites and airborne and ground sensors are used to assess, predict and describe disaster impacts to inform the actions of leaders, first responders, and those providing relief.

The Advanced Rapid Imaging and Analysis team at NASA’s Jet Propulsion Laboratory in Pasadena, California, collaborated on the map, which was generated by the National Central University of Taiwan. The map includes optical satellite data acquired by Planet Labs, a private Earth-imaging company. – Aries Keck

NASA Responds to Puerto Rico Quakes

Starting Dec. 28, 2019, Puerto Rico was shaken by a series of hundreds of small earthquakes that culminated on Jan. 7 with a powerful 6.4 magnitude earthquake. This earthquake caused widespread damage to infrastructure, leaving more than 2,000 people in shelters, nearly 1 million without power, and hundreds of thousands without water.

NASA quickly mobilized to provide its expertise and satellite Earth-observing data in support of the response and recovery for this disaster. A team in the agency’s Earth Science Disasters Program began collecting information and coordinating with stakeholders, university partners, and the federal agencies leading the response effort. Agencies included the Federal Emergency Management Agency, the U.S. Geological Survey, the U.S. Department of Health and Human Services, and the Earthquake Engineering Research Institute.

Damage proxy maps show structures that were likely damaged by the earthquake in red and yellow. The Ponce region of Puerto Rico is shown on Jan. 9 (above). The Guanica region is shown on Jan. 14 (below). Credit: NASA, JPL-Caltech, ESA

 

Several data products in support of the disaster response are posted in geographic information system (GIS) format on the NASA Disasters Mapping Portal, which allows the data to be more easily analyzed by other agencies and researchers.

The Advanced Rapid Imaging and Analysis team at NASA’s Jet Propulsion Laboratory and California Institute of Technology in Pasadena, California, have used Synthetic Aperture Radar data from several recent European Space Agency-operated Copernicus Sentinel-1 satellite overpasses of the region to identify potential damage to structures and displacement of the surface. Damage proxy maps can be used to identify damaged structures. Displacement maps show shifts in land surface due to the tectonic activity.

 

Surface displacement maps highlight the change in elevation caused by the Puerto Rico earthquakes between Jan. 2 and 14. This displacement map from Jan. 14 estimates around 6 inches of surface lowering centered on the Guayanilla Bay in the southern region of Puerto Rico. (Gray area is ocean.) Credit: NASA, JPL-Caltech, ESA

 

Scientists have conducted preliminary mapping of landslides inferred to have occurred during the period of strong ground shaking related to the Jan. 7 earthquake. One hundred twenty landslides were mapped. They are widely dispersed across the affected area, with the highest concentration in the southwestern portion of the island nearest the epicenter. The landslide team is coordinating directly with the USGS Landslide Hazard program to provide relevant information for site analyses and assessments.

Scientists at the University Space Research Association collaborating with NASA have used satellite data to assess power outage maps. These “Black Marble” maps are being provided to FEMA Region II’s Geospatial Resource Center by USRA’s Earth from Space Institute and are being used to inform response efforts on the ground.

 

The preliminary map of co-landslides caused by the Jan. 7 earthquake shows the location of 120 landslides with the USGS Peak Ground Acceleration Contours that indicate areas of greatest shaking. Credit: Knoper, Clark, Medwedeff, Townsend, Gong (University of Michigan), Zekkos (University of California Berkeley, Kirschbaum (NASA GSFC)

 

Preliminary assessment of outdoor illumination conditions before and after the Jan. 7 earthquake are shown in this series of maps. The Jan. 8 map tracks the initial outages after the earthquake. The Jan. 9 and 10 maps show some recovery, particularly in densely populated areas of San Juan, Ponce, and Arecibo. Credit: Universities Space Research Association

Mapping Dorian’s Damage to the Bahamas

A damage assessment map derived from satellite data shows conditions on one island in the Bahamas on Sept. 2. Red and yellow areas are likely the most damaged. Credit: NASA-JPL, Caltech, Earth Observatory of Singapore

NASA has created and provided to emergency response organizations a detailed damage assessment map of the Bahamas based on satellite data after Hurricane Dorian hit the islands earlier this week.

For over a week, a response team from NASA’s Earth Science Disasters Program has worked to create maps of impacts and potential impacts from the storm and make them available to decision makers.

The new damage assessment map used satellite data from the European Union’s Sentinel-1 Copernicus instrument to identify areas (shown in red and yellow) that were likely most affected by the storm’s Category 5 winds and storm surge. The map was created by the Advanced Rapid Imaging and Analysis team at NASA’s Jet Propulsion Laboratory in collaboration with the European Space Agency, the California Institute of Technology and the Earth Observatory of Singapore.

The region shown in the map is Marsh Harbour, a town in the Abaco Islands, a group of Bahamian islands and cays that form a 120-mile–long chain. Marsh Harbour is the commercial center of the Abacos.

NASA’s Disasters Program has also been contacted by the Caribbean Disaster Emergency Management Agency for assistance in providing high-resolution flood maps. That agency’s disaster response teams are attempting to reach inundated areas, many of which remain inaccessible. This type of map will give Bahamian officials a better understanding of flood impacts and where the help is most urgently needed. – Jim Schultz

Getting Florida Ready for Hurricane Dorian

Satellite view of Hurricane Dorian on Thursday, Aug. 29. (Credit: NOAA Environmental Visualization Laboratory)

As Hurricane Dorian slowly approaches Florida’s Atlantic coast, NASA personnel have engaged with federal, state and local emergency responders in preparation for landfall as soon as Labor Day.

A team of NASA disaster coordinators from the Earth Science Division’s Disasters Program has been activated to work with emergency agencies to determine what NASA information assets derived from satellite data can be provided to help decision makers direct resources and help communities likely to be affected by the storm.

NASA has already created a map of Florida showing current soil moisture conditions to help scientists and response agencies predict the impact of heavy rainfall from Hurricane Dorian on flooding and runoff across the state. The map uses data from the NASA-NOAA Suomi NPP satellite. This and other data products are made available from the program’s mapping portal.

Program specialists cull and analyze a wide range of data derived from space-borne instruments to produce visualizations and maps of anything from power outages to the extent of flood waters and damage to ecosystems. Such information can be particularly important for remote areas where on-the-ground observations are difficult to obtain.

 

Hurricane Season 2019: NASA Ready to Help

When Cyclone Idai made landfall in Mozambique on March 15, it had a major impact on the energy grid. This NASA visualization created with data from satellite observations shows nighttime lights before (left) and after landfall, revealing disruptions in energy infrastructure and utility services. Credit: NASA

On June 1, the 2019 Atlantic hurricane season begins. But worldwide there really is no off-season for these tropical storms; they affect the globe in one way or another year-round.

At NASA, we leverage the power of our views of Earth from space and research aircraft to assist communities around the world as they plan for — and recover from — these severe, often life-threatening, events. Data from NASA’s robust constellation of orbiting satellites and airborne and ground sensors are used to assess, predict and describe disaster impacts to inform the actions of leaders, first responders, and those providing relief.

For example, NASA data visualizations map storm-induced power outages and help responders monitor progress in power restoration. We’re able to supply near-real-time scans of inland surge and flood waters, allowing decision makers to deploy help to those who need it the most. We can also chart widespread damage to vegetation and help monitor ecosystem recovery. This type of information can be crucial, especially for remote areas where in-person observations are difficult.

This year, NASA has already aided in the response to cyclones Idai and Kenneth that hit Mozambique in March and April, respectively. Combined, the storms led to the deaths of more than 1,000 people and the displacement of nearly 180,000. To assist in recovery, we reached out to officials and responders to identify the kinds of information NASA could contribute. We then put together data packages specific to the needs of local officials and national decision makers.

In 2018 we used NASA data to help responders assess the threat of landslides as Hurricane Willa struck Mexico’s southwestern coast in October. Before and after Super Typhoon Yutu made landfall in the Northern Mariana Islands in October, we were able to craft pre- and post-event maps that helped officials analyze the damage across a wide stretch of the island chain.

Communities affected by disasters rely on the efforts of humanitarian aid and relief organizations, food and water system groups, weather and climate centers, and telecommunications and re-insurance partners. Because of the information NASA provides to decision makers, those most stricken can be reached and helped more quickly, lessening impacts and speeding the recovery process.

Our goal is to use NASA expertise to anticipate risk and help alleviate projected impacts. In so doing, we will play our part in helping communities improve readiness and sustain resilience.

David Green, Disasters Program Manager, NASA Earth Science Division

NASA Helped to Keep Soldiers Safe During Hurricane Florence

Black Marble imagery before the lights went out in Fort Bragg, North Carolina. Credits: NASA
Black Marble imagery after the lights went out in Fort Bragg, North Carolina. Credits: NASA

Soldiers in Fort Bragg found [NASA’s Black Marble product] useful for locating power outages on the army base. “And soldiers could see any information they needed right from their cell phones…

In September, Hurricane Florence barreled toward the U.S. East Coast bringing powerful wind, rain and catastrophic flooding that devastated cities, towns, and military bases. The U.S. Army’s Fort Bragg, just west of Fayetteville, North Carolina, was one of the hardest-hit areas. During the storm, soldiers at Fort Bragg used NASA’s Disasters Mapping Portal to identify hazardous areas and to assess power outages and residential flooding.

“The Disasters GIS [Geographic Information System] portal was a very effective way to display and disseminate information for those living in an area that was facing a major disaster,” said Chief Jason Feser of the Army Geospatial Center.

The NASA Disasters Mapping Portal hosts collective geospatial data from NASA scientists to hand off through GIS-based tools to emergency managers, first responders, and the public before, during, and after a disaster in a specific location. The use of GIS allows the Disasters Program to provide free and publicly available scientific data in a more user-friendly environment, thus bridging the gap between science and application. Emergency managers are also able to bring in NASA data and combine it with their own national, state, or local datasets to gain a better understanding of potential hazards and inform disaster response.

“The Disasters Portal allows everyone to focus on what they do best,” said Jeremy Kirkendall, NASA Disasters Mapping Portal lead. “NASA’s scientists create the products, we host them, and other agencies can easily find them in a ready-to-use format.”

Among the products Fort Bragg personnel used was NASA’s Black Marble product. Using nighttime imagery from NASA’s Suomi satellite, NASA’s Black Marble provides important information for pre-event and post-event mapping and monitoring of power outages. Black Marble has been used to assess disruptions in energy infrastructure and utility services following major disasters. Soldiers in Fort Bragg found it useful for locating power outages on the army base. “And soldiers could see any information they needed right from their cell phones,” Feser said.

The NASA Disasters Program began coordinating efforts prior to September 11, 2018, before Hurricane Florence’s landfall, and continued monitoring the disaster after the storm made landfall on September 14, 2018. Aside from the U.S. Army, the NASA Disasters program engaged with partners and stakeholders such as FEMA, National Guard Bureau, NOAA, U.S. Forest Service, U.S. Geological Survey, and U.S. Department of Interior.

To learn more about the Disasters Program please visit: https://disasters.nasa.gov to learn more about the Disasters Portal please visit: https://maps.disasters.nasa.gov

To view Black Marble imagery from Fort Bragg, North Carolina, in the Disasters GIS Portal please visit: https://maps.disasters.nasa.gov/arcgis/apps/webappviewer/index.html?id=f8bd16575eb7495ca1edb09ea0d31d67

NASA Is Monitoring California Wildfires From Space

November’s California wildfires, including the Woolsey Fire near Los Angeles and the Camp Fire in Northern California, are now one of the most destructive and deadliest in the state’s history. NASA satellites are observing these fires – and the damage they’re leaving behind – from space.

Credits: NASA

The Advanced Rapid Imaging and Analysis (ARIA) team at NASA’s Jet Propulsion Laboratory in Pasadena, California, produced new damage maps using synthetic aperture radar images from the Copernicus Sentinel-1 satellites. The first map shows areas likely damaged by the Woolsey Fire as of Sunday, Nov. 11. These maps are provided to various agencies to aid in disaster response. It covers an area of about 50 miles by 25 miles (80 kilometers by 40 kilometers) – framed by the red polygon. The color variation from yellow to red indicates increasing ground surface change, or damage. This ARIA damage proxy map was provided to agencies like FEMA, the California National Guard, California Department of Forestry and Fire Protection, San Jose Water, California Earthquake Clearinghouse and the California Governor’s Office of Emergency Services to provide an overall damage assessment in the state.

NASA’s Fire Information for Resource Management System (FIRMS) distributes near real-time (NRT) active fire data within 3 hours of a satellite overpass from both the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS). Natural resource managers need to know where a fire is quickly to be able to prepare for and respond to a wildfire event. NASA FIRMS NRT helps to visualize the location of a fire in a timely manner for individuals like Natural Resource Managers or others who are directly impacted by wildfires.

Highlights of How NASA’s Disasters Team Helps Reduce Risk

The International Day of Disaster Reduction 2018 is on October 13, and NASA is marking the occasion by sharing highlights of how we provide data to support disaster reduction and help improve recovery efforts. The NASA Disasters Team, a part of the Applied Sciences Program within NASA’s Earth Science Division, promotes the use of streamed data to prepare for, respond to and recover from natural and technological disasters. The NASA Disasters team targets a spectrum of disasters including floods, earthquakes, volcanoes, landslides, and oil spills, as well as assesses hazards to vulnerable populations and livelihoods.

Here’s a few ways in which the Disasters Team is working to reduce risk:

The Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite shows Hurricane Michael on October 10, 2018.
The Atmospheric Infrared Sounder (AIRS) onboard NASA’s Aqua satellite shows Hurricane Michael on October 10, 2018. Credit: NASA JPL-Caltech

NASA’s AIRS instrument was used to support disaster risk reduction by providing critical information to Florida emergency managers on the impact of wind direction and speed before Hurricane Michael made landfall.

The Advanced Rapid Imaging and Analysis (ARIA) team created a damage proxy map (close-up right) for Palu, Indonesia. Credit: NASA JPL-Caltech
The Advanced Rapid Imaging and Analysis (ARIA) team created a damage proxy map (close-up right) for Palu, Indonesia. Credit: NASA JPL-Caltech

NASA’s ARIA team created damage proxy maps after the Palu, Indonesia earthquake. These images help governments and responders identify areas that experienced significant damage and allocate resources accordingly to reduce risk.

Radar view of floodwaters in the Carolinas from Hurricane Florence. Credit: NASA
Floodwaters in the Carolinas from Hurricane Florence. Credit: NASA

To support disaster risk reduction NASA developed an airborne radar mission to give agencies like FEMA and the U.S. Forest Service a much-needed view of floodwaters that threatened areas in North Carolina and South Carolina.

Night light show San Juan, Puerto Rico, before Hurricane Maria, 2017. Credit: NASA Goddard
Night lights show San Juan, Puerto Rico, before Hurricane Maria, 2017. Credit: NASA Goddard

NASA used its Black Marble technology to pinpoint where the lights went out after Hurricane Maria devastated Puerto Rico. Knowing where the power is out-and how long the power has been out-allowed first responders to better deploy rescue and repair crews and to distribute life-saving supplies.