Sound Effects: Parker Solar Probe Passes Acoustic Testing

When NASA’s Parker Solar Probe lifts off on top of a Delta IV Heavy launch vehicle in summer 2018, it will undergo both intense vibration from the physical forces of the rocket engines, as well as acoustic effects from the sound of the engines and the rocket going through the atmosphere.

Verifying the spacecraft and its systems are ready for the rigors of launch is one of the most important parts of testing. On Nov. 3, Parker Solar Probe passed vibration testing at the Johns Hopkins Applied Physics Laboratory, or APL, in Laurel, Maryland, where it was designed and built. On Nov. 14, the spacecraft successfully completed acoustic testing at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and is now being prepared for further environmental tests.

Goddard’s Acoustic Test Chamber is a 42-foot-tall chamber that uses 6-foot-tall speakers –which can create sound levels of up to 150 decibels – to simulate the extreme noise levels of a rocket launch. While vibration testing focuses on how much the spacecraft will shake during launch, acoustic testing subjects the probe to intense sound forces, like those generated by the Delta IV Heavy. Each type of force affects the spacecraft differently, so both tests are necessary.

“We’re launching on a very large and powerful vehicle, so we need to make sure that the spacecraft, its systems, and its instruments are going survive the launch environment,” said Shelly Conkey, a Parker Solar Probe structural analyst at APL, who led the acoustic test. “We use our data models to predict the forces that will be impacting Parker Solar Probe, and by comprehensive monitoring of the spacecraft during testing, we can ensure that we’re ready to move on to thermal vacuum testing.”

Parker Solar Probe spacecraft will explore the Sun’s outer atmosphere and make critical observations that will answer decades-old questions about the physics of stars. The resulting data will also help improve how we forecast major eruptions on the Sun and subsequent space weather events that can impact life on Earth, as well as satellites and astronauts in space. The mission is named for Eugene N. Parker, whose profound insights into solar physics and processes have helped shape the field of heliophysics.

Members of the integration and testing team roll Parker Solar Probe into the Acoustic Test Chamber at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: NASA/Johns Hopkins APL/Ed Whitman
A member of the integration and testing prepares Parker Solar Probe for environmental testing inside the Acoustic Test Chamber at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: NASA/Johns Hopkins APL/Ed Whitman
Members of the integration and testing team prepare Parker Solar Probe for environmental testing in the Acoustic Test Chamber at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: NASA/Johns Hopkins APL/Ed Whitman
Parker Solar Probe sits in the Acoustic Test Chamber at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: NASA/Johns Hopkins APL/Ed Whitman

Final Rocket Components Arrive in Florida for Parker Solar Probe

A United Launch Alliance Delta IV Heavy common booster core arrives at the Horizontal Integration Facility at Cape Canaveral Air Force Station for preflight processing. The Delta IV Heavy will launch NASA’s upcoming Parker Solar Probe mission. Photo credit: NASA/Cory Huston

All components of the United Launch Alliance Delta IV Heavy rocket that will launch NASA’s Parker Solar Probe have arrived for prelaunch processing at Florida’s Cape Canaveral Air Force Station.

The Port Common Booster Core of the Delta IV Heavy for the Parker Solar Probe (PSP) Mission is offloaded from the Mariner and transported to the Horizontal Integration Facility. The rocket’s second stage arrived Saturday, Aug. 26, along with the third and final common booster core, which will complete the first stage. The hardware was delivered by ship to Port Canaveral, then transported by truck to the Horizontal Integration Facility at Space Launch Complex 37.

The Parker Solar Probe will perform the closest-ever observations of a star when it travels through the Sun’s atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

Photos at right, above: The Port Common Booster Core of the Delta IV Heavy for the Parker Solar Probe Mission is offloaded from the Mariner ship for transport to the Horizontal Integration Facility at Space Launch Complex 37. Photo credit: NASA/Ben Smegelsky. Below: Sunrise is reflected in the side of the Mariner ship and in the water of Port Canaveral below. Photo credit: NASA/Cory Huston

Save

Save

Delta IV Heavy Booster Cores Arrive for Parker Solar Probe

Framed by a series of cabbage palms, a United Launch Alliance Delta IV Heavy common booster core is transported by truck to Cape Canaveral Air Force Station's Launch Complex 37 Horizontal Processing Facility after arriving at Port Canaveral. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission.
Framed by a series of cabbage palms, a United Launch Alliance Delta IV Heavy common booster core is transported by truck to Cape Canaveral Air Force Station’s Launch Complex 37 Horizontal Processing Facility after arriving at Port Canaveral. The Delta IV Heavy will launch NASA’s upcoming Parker Solar Probe mission. Photo credits: NASA/Kim Shiflett

A United Launch Alliance Delta IV Heavy common booster core is transported by truck to Cape Canaveral Air Force Station's Launch Complex 37 Horizontal Processing Facility after arriving at Port Canaveral. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.Launch preparations are beginning to get off the ground for NASA’s upcoming Parker Solar Probe mission, scheduled to lift off in summer 2018 atop a United Launch Alliance Delta IV Heavy rocket.

Two of the three common booster cores comprising the rocket’s first stage have arrived on the company’s Mariner ship, which delivered the components to Port Canaveral in Florida. From there the cores were offloaded and transported to the Horizontal Integration Facility at Cape Canaveral Air Force Station’s Space Launch Complex 37.

The Parker Solar Probe will perform the closest-ever observations of a star when it travels through the Sun’s atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

Save

Save