NASA’s Space Launch System (SLS) rocket’s launch vehicle stage adapter. Credits: NASA/Fred Deaton
Teams at NASA’s Marshall Space Flight Center in Huntsville, Alabama, moved the Artemis I launch vehicle stage adapter for NASA’s Space Launch System (SLS) rocket onto the agency’s Pegasus barge July 17.
The adapter is the cone shaped piece that connects the rocket’s core stage and interim cryogenic propulsion stage (ICPS). Pegasus will transport the flight hardware to NASA’s Kennedy Space Center in Florida where it will be integrated with other parts of the rocket in preparation for launch.
Technicians at NASA’s Stennis Space Center have completed the third of eight tests in the Green Run test series for the Space Launch System rocket. Each test is designed to gradually bring the rocket’s core stage — the same hardware that will be used for Artemis I — to life for the first time.
Inside the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida, Payton Jones, at left, a launch vehicle processing technician, and Bradley Bundy, a spaceflight technician, both with Jacobs, complete the first mate pinning of the right-hand motor segment to the right-hand aft skirt on one of the two solid rocket boosters for the agency’s Space Launch System. Photo credit: NASA/Kim Shiflett
Inside the Florida spaceport’s Rotation, Processing and Surge Facility, the NASA and Jacobs team completed a pin. The pinning activity involved using bolts to attach one of five segments that make up one of two solid rocket boosters for SLS to the rocket’s aft skirt. A crane crew assisted in mating the aft segments to the rocket’s two aft skirts.
A handful of the team members gained pinning experience on boosters for the space shuttle, while the rest were first-time pinners. Pablo Martinez, Jacobs TOSC handling, mechanical and structures engineer, inserted the first of 177 pins per joint to complete the first official step in stacking the SLS boosters.
Manufactured by Northrop Grumman in Utah, the 177-foot-tall twin boosters provide more than 75 percent of the total SLS thrust at launch. SLS is the most powerful rocket NASA has ever built.
The SLS rocket will launch NASA’s Orion spacecraft and send it to the Moon for Artemis I — a mission to test the two as an integrated system, leading up to human missions to the Moon. Under the Artemis program, NASA will land the first woman and the next man on the Moon by 2024.
NASA completed the second of eight tests in the Green Run test series at the agency’s Stennis Space Center near Bay St. Louis, Mississippi, where the Space Launch System rocket’s core stage is installed in the B-2 Test Stand. The avionics power on and checkout test steadily brought the core stage flight avionics hardware, which controls the rocket’s first eight minutes of flight, to life for the first time. The three flight computers and avionics are located in the forward skirt, the top section of the 212-foot tall core stage, with more avionics distributed in the core’s intertank and engine section.
Twin rocket boosters for NASA’s Space Launch System (SLS) that will power Artemis missions to the Moon have arrived at the agency’s Kennedy Space Center in Florida. The two motor segments, each comprised of five segments, arrived at Kennedy’s Rotation, Processing and Surge Facility (RPSF) on June 15, 2020, by train from a Northrop Grumman manufacturing facility in Promontory, Utah. Credits: NASA/Kevin O’Connell
The rocket booster segments that will help power NASA’s first Artemis flight test mission around the Moon arrived at the agency’s Kennedy Space Center in Florida on Monday for launch preparations.
All 10 segments for the inaugural flight of NASA’s first Space Launch System (SLS) rocket and Orion spacecraft were shipped by train from Promontory, Utah. The 10-day, cross-country journey is an important milestone toward the first launch for NASA’s Artemis program.
Inside the Booster Fabrication Facility at NASA’s Kennedy Space Center in Florida, the Artemis I aft skirts for the agency’s Space Launch System (SLS) rocket’s twin solid rocket boosters are being readied for their move to the Rotation, Processing and Surge Facility (RPSF). In view, the left aft skirt assembly is attached to a move vehicle and moved out of a test cell. The aft skirts were refurbished by Northrop Grumman. They house the thrust vector control system, which controls 70 percent of the steering during initial ascent of the SLS rocket. The segments will remain in the RPSF until ready for stacking with the forward and aft parts of the booster on the mobile launcher in High Bay 3 of the Vehicle Assembly Building.
As it soars off the launch pad for the Artemis I missions, NASA’s Space Launch System (SLS) rocket is powered by two solid rocket boosters. Critical parts of the booster will soon head to NASA’s Kennedy Space Center in Florida in preparation for the Artemis I launch. Specialized transporters move each of the 10 solid rocket motor segments from the Northrop Grumman facility in their Promontory Point, Utah, to a departure point where they will leave for NASA’s Kennedy Space Center in Florida. The cross-country journey is an important milestone toward the first launch of NASA’s Artemis lunar program.