The first pieces of flight hardware for Gateway’s Habitation and Logistics Outpost (HALO) have arrived at Thales Alenia Space Italy (TASI) sent by NASA’s HALO contractor Northrop Grumman. These forgings are the base metal that is used to create the pressure shell, barrel sections, and interface rings for HALO. The manufacturing process is based on the same process employed by TASI in support of Northrop Grumman’s Cygnus spacecraft, which is currently being used to deliver cargo to the International Space Station. HALO will be the initial pressurized living quarters where astronauts spend their time during expeditions aboard the orbiting Gateway. About the size of a small studio apartment, it can support a crew of four for up to 30 days when NASA’s Orion spacecraft is docked to the Gateway.
The second to last piece of hardware for the Artemis I test flight around the Moon has arrived at the agency’s Kennedy Space Center in Florida. The launch vehicle stage adapter (LVSA) connects the core stage of NASA’s Space Launch System (SLS) rocket to the upper stage, called the Interim Cryogenic Propulsion Stage. The cone-shaped connector also helps protect the RL10 engine housed in the upper stage, which will provide the power necessary to leave Earth’s orbit and send the Orion spacecraft on its journey to the Moon.
Teams at NASA’s Marshall Space Flight Center in Huntsville, Alabama, moved the Artemis I launch vehicle stage adapter for NASA’s Space Launch System (SLS) rocket onto the agency’s Pegasus barge July 17.
The adapter is the cone shaped piece that connects the rocket’s core stage and interim cryogenic propulsion stage (ICPS). Pegasus will transport the flight hardware to NASA’s Kennedy Space Center in Florida where it will be integrated with other parts of the rocket in preparation for launch.
Technicians at NASA’s Stennis Space Center have completed the third of eight tests in the Green Run test series for the Space Launch System rocket. Each test is designed to gradually bring the rocket’s core stage — the same hardware that will be used for Artemis I — to life for the first time.
Technicians at NASA’s Kennedy Space Center in Florida recently finished meticulously applying more than 180 blocks of ablative material to the heat shield for the Orion spacecraft set to carry astronauts around the Moon on Artemis II.
The heat shield is one of the most critical elements of Orion and protects the capsule and the astronauts inside from the nearly 5,000 degrees Fahrenheit temperatures, about half as hot at the Sun, experienced during reentry through Earth’s atmosphere when coming home from lunar velocities.
Prior to installation, several large blocks of the ablative material called AVCOAT were produced at the agency’s Michoud Assembly Facility in New Orleans. They were then shipped to Kennedy and machined into 186 unique smaller blocks before being applied by the technicians onto the heat shield’s underlying titanium skeleton and carbon fiber skin.
To continue preparing the heat shield, engineers will conduct non-destructive evaluations to look for voids in the bond lines, as well as measure the steps and gaps between the blocks. The gaps will be filled with adhesive material and then reassessed. The heat shield will then undergo a thermal test after which it will be sealed, painted and then taped to help weather on-orbit thermal conditions. Once all testing has been completed, later this year the heat shield will be installed and bolted to the crew module.
NASA is working to land the first woman and the next man on the Moon by 2024. Orion, along with NASA’s Space Launch System (SLS) rocket, the Human Landing System and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. Artemis II will be the first crewed mission of Orion atop the SLS rocket.
Inside the Florida spaceport’s Rotation, Processing and Surge Facility, the NASA and Jacobs team completed a pin. The pinning activity involved using bolts to attach one of five segments that make up one of two solid rocket boosters for SLS to the rocket’s aft skirt. A crane crew assisted in mating the aft segments to the rocket’s two aft skirts.
A handful of the team members gained pinning experience on boosters for the space shuttle, while the rest were first-time pinners. Pablo Martinez, Jacobs TOSC handling, mechanical and structures engineer, inserted the first of 177 pins per joint to complete the first official step in stacking the SLS boosters.
Manufactured by Northrop Grumman in Utah, the 177-foot-tall twin boosters provide more than 75 percent of the total SLS thrust at launch. SLS is the most powerful rocket NASA has ever built.
The SLS rocket will launch NASA’s Orion spacecraft and send it to the Moon for Artemis I — a mission to test the two as an integrated system, leading up to human missions to the Moon. Under the Artemis program, NASA will land the first woman and the next man on the Moon by 2024.
Today is my first day fully transitioned as the head of NASA’s Human Exploration and Operations Mission Directorate, and I am honored to lead a new era of human spaceflight.
You’ll hear me say this time and time again: exploration is a team sport. I saw that in low-Earth orbit with NASA, industry and our international partners, and it is critical to accomplishing the goals ahead for the Artemis program.
I’ve spent most of my 28 years at NASA focused on exploration 250 miles off the Earth, including most recently overseeing the Commercial Crew Program. We took a risk with industry by encouraging commercial innovation in a new market with the end goal of government becoming a customer of low-Earth orbit services, hopefully one of many. We tested that approach first with cargo deliveries, and now we are doing it again with crew.
I’m optimistic about industry’s ability to lead a private space economy in low-Earth orbit, one where NASA achieves our goal of being a regular customer. That frees us up to focus on human exploration farther in the universe including the Moon and Mars.
Just as sending cargo and humans to the space station are separate challenges, sending cargo and humans to the Moon and beyond are also different. Each requires significantly more risk and separate requirements. The responsibility of human life I am entrusted with as part of NASA has been at the front of my mind every step of the way with commercial crew and is as much so today as we prepare to push the boundaries of human exploration.
Built specifically for deep space missions, I am confident NASA’s Space Launch System rocket and Orion spacecraft are the only rocket and spacecraft capable of meeting our aggressive goal of landing the first woman and next man on the Moon in four years.
Orion is complete and SLS is on track for its last major test later this year before flight. These systems will be integrated early next year and launched together for the first time on an uncrewed flight test around the Moon in 2021 followed by a test flight with crew around the Moon in 2023.
Again, exploration is a team sport, and we are not going into deep space alone. We have prioritized commercial innovation in our plans to return to the Moon. In 2024, NASA will send astronauts on the Artemis III mission to lunar orbit where they will transfer to a commercial human landing system for an expedition to the lunar surface. These modern landers will be capable of docking to Orion or the Gateway, which will be operational by 2024. Built by commercial partners with planned additions from international partners, the Gateway is critical to enabling sustainable lunar operations by the end of the decade and missions farther into the solar system, including Mars.
The universe is vast and there’s room for all the players on our team. Expanding human presence into the solar system depends on our combined efforts to enable every aspect from our satellite communications network, to research on astronaut health and performance. Whether we work in science, technology or human spaceflight at NASA, the private sector or elsewhere in the world, we will achieve more when we work together.
As I move into this new chapter in my professional life, I’m excited for the many firsts to come – the first operational commercial flights to the space station. The first commercial lunar payload delivery. The first woman on the Moon. The first commercial lunar landers. The Gateway. And the many unknown scientific discoveries ahead. Mostly, I’m excited though because I know we’re all in this together. One team for all of humanity.
Three panels for the Artemis II Orion stage adapter were built by AMRO Fabricating Corp. in South El Monte, California and shipped to Marshall where engineers and technicians from NASA are joining them using a sophisticated friction-stir welding process to form the Orion stage adapter. This critical part of NASA’s Space Launch System (SLS) rocket will send the Artemis II crew into lunar orbit. AMRO also built panels for the Artemis II launch vehicle stage adapter also currently being built at Marshall and the SLS core stage and the Orion crew module built at NASA’s Michoud Assembly Facility in New Orleans. All panels where joined with the same friction-stir welding process. The Artemis I Orion stage adapter, also built at Marshall, has been delivered to Kennedy Space Center where it will be stacked with the rest of the SLS rocket components. The adapter connects the Interim Cryogenic Propulsion Stage, the rocket’s upper stage that sends Orion to the Moon, to the Orion spacecraft. The Orion stage adapter has space for small payloads; on Artemis I it will transport 13 small satellites to deep space where they can study everything from asteroids to the Moon and radiation. SLS, the world’s most powerful rocket, along with NASA’s Orion spacecraft, will launch America into a new era of exploration to destinations beyond Earth’s orbit.