Artemis II Crew Visits Naval Base San Diego for Recovery Training

Artemis II astronauts inside the Vehicle Advanced Demonstrator for Emergency Recovery (VADR) during a tour of Naval Base San Diego.
From left (front to back), NASA astronauts Victor Glover, Christina Hammock Koch, and Reid Wiseman, along with Canadian Space Agency astronaut Jeremy Hansen, pose inside the Vehicle Advanced Demonstrator for Emergency Recovery (VADR) during a tour of Naval Base San Diego on July 19, 2023. VADR is a replica of the Orion crew module that will carry the astronauts around the Moon on Artemis II. Photo credit: U.S. Navy/Mass Communication Specialist 2nd Class Joshua Samoluk

The Artemis II crew – NASA astronauts Reid Wiseman, Victor Glover, Christina Hammock Koch, and Canadian Space Agency astronaut Jeremy Hansen – visited Naval Base San Diego on July 19 ahead of the first Artemis II recovery test in the Pacific Ocean, Underway Recovery Test-10. The test will build on the success of Artemis I recovery and ensure NASA and the Department of Defense personnel can safely recover astronauts and their Orion spacecraft after their trip around the Moon on the first crewed Artemis mission.

The crew met with recovery team members from NASA’s Exploration Ground Systems Program and the Department of Defense to learn more about the recovery process for their mission, which includes being extracted from the spacecraft after splashing down in the Pacific Ocean and being lifted via helicopter to the recovery ship where they will undergo routine medical checks before returning to shore.

The visit included a walkdown of the ground equipment and facilities the team uses to practice recovery procedures along with a walkthrough of the recovery ship. The crew will participate in full recovery testing at sea next year.

Orion Heat Shield Installed for NASA’s Artemis II Mission

The heat shield for the Artemis II Orion spacecraft
Installation of the heat shield for the Artemis II Orion spacecraft was recently completed at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Cory Huston

On June 25, 2023, teams completed installation of the heat shield for the Artemis II Orion spacecraft inside the high bay of the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.

The 16.5-foot-wide heat shield is one of the most important systems on the Orion spacecraft ensuring a safe return of the astronauts on board. As the spacecraft returns to Earth following its mission around the Moon, it will be traveling at speeds of about 25,000 mph and experience outside temperatures of nearly 5,000 degrees Fahrenheit. Inside the spacecraft, however, astronauts will experience a much more comfortable temperature in the mid-70s thanks to Orion’s thermal protection system.

Up next, the spacecraft will be outfitted with some of its external panels ahead of acoustic testing later this summer. These tests will validate the crew module can withstand the vibrations it will experience throughout the Artemis II mission, during launch, flight, and landing.

Once acoustic testing is complete, technicians will attach the crew module to Orion’s service module, marking a major milestone for the Artemis II mission, the first mission with astronauts under Artemis that will test and check out all of Orion’s systems needed for future crewed missions.

Artemis I Core Stage Engineering Testing Complete

This week, engineers and technicians successfully completed an engineering test series of the Space Launch System (SLS) rocket core stage inside the Vehicle Assembly Building at NASA’s Kennedy Space Center as part of the integrated testing before launch.

After replacing and testing one of four RS-25 engine controllers, the team conducted several tests to ensure the massive core stage is ready to roll to the launch pad for the wet dress rehearsal ahead of the Artemis I launch. Engineers and technicians tested communication between the flight computers and other core stage systems and slightly moved the engines to practice the gimbaling they will experience during flight.

All four engine controllers were powered up and performed as expected as part of the Artemis I Core Stage engineering tests. Following the power up, engineers successfully performed diagnostic tests on each controller.

Up next, the team will conduct a second countdown sequencing test to demonstrate the ground launch software and ground launch sequencer, which checks for health and status of the vehicle while at the pad. The simulated launch countdown tests the responses from SLS and the Orion spacecraft, ensuring the sequencer can run without any issues. After the countdown test and final closeouts are complete, SLS and Orion will head to the launch pad for the first time to complete the wet dress rehearsal test.

Lift Underway to Top Mega-Moon Rocket with Orion Spacecraft

Orion lifted atop SLS rocket in the VAB
Photo Credit: Chad Siwik

Final stacking operations for NASA’s mega-Moon rocket are underway inside the Vehicle Assembly Building at NASA’s Kennedy Space Center as the Orion spacecraft is lifted onto the Space Launch System (SLS) rocket for the Artemis I mission. Engineers and technicians with Exploration Ground Systems (EGS) and Jacobs attached the spacecraft to one of the five overhead cranes inside the building and began lifting it a little after midnight EDT.

Next, teams will slowly lower it onto the fully stacked SLS rocket and connect it to the Orion Stage Adapter. This will require the EGS team to align the spacecraft perfectly with the adapter before gently attaching the two together. This operation will take several hours to make sure Orion is securely in place.

NASA will provide an update once stacking for the Artemis I mission is complete.

Teams Add Launch Abort System to Ready Orion for Artemis I

NASA's Orion spacecraft
The Orion spacecraft for the Artemis I mission arrives at Kennedy Space Center’s Launch Abort System facility on July 10, 2021, after being transported from the Florida spaceport’s Multi-Payload Processing Facility earlier in the day. Photo credit: NASA/Cory Huston

The Orion spacecraft for the Artemis I mission recently completed fueling and servicing checks while inside the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida. The capsule has now made it to its next stop on the path to the pad – the spaceport’s Launch Abort System Facility.

Crowning the spacecraft with its aerodynamic shape, the launch abort system is designed to pull crew away to safety from the Space Launch System (SLS) rocket in the event of an emergency during launch. This capability was successfully tested during the Orion Pad Abort and Ascent Abort-2 tests and approved for use during crewed missions.

Teams with Exploration Ground Systems and contractor Jacobs will work to add parts of the launch abort system onto the spacecraft. Technicians will install four panels that make up the fairing assembly and protect the spacecraft from heat, air, and acoustic environments during launch and ascent. A launch tower will top the fairing assembly to house the pyrotechnics and a jettison motor. The system will also be outfitted with instruments to record key flight data for later study.

With successful demonstration of the system during previous tests, the abort motor that pulls the spacecraft away from the rocket and attitude control motor that steers the spacecraft for a splashdown during an abort will not be functional for the uncrewed Artemis I mission. The jettison motor will be equipped to separate the system from Orion in flight once it is no longer needed, making Orion thousands of pounds lighter for the journey to the Moon.

Once the system’s integration is complete, teams will transport the spacecraft to the center’s Vehicle Assembly Building. There, it will join the already stacked flight hardware and be raised into position atop the SLS rocket, marking the final assembly milestone for the  Artemis rocket.

Launching in 2021, Artemis I will be a test of the Orion spacecraft and SLS rocket as an integrated system ahead of crewed flights to the Moon. Under Artemis, NASA aims to land the first woman and first person of color on the Moon and establish long-term lunar exploration.

View additional photos here.

Backbone of NASA’s Moon Rocket Joins Boosters for Artemis I Mission

Space Launch System core stage
Teams with NASA’s Exploration Ground Systems and contractor Jacobs lower the Space Launch System (SLS) core stage – the largest part of the rocket – onto the mobile launcher, in between the twin solid rocket boosters, inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on June 12, 2021. Photo credit: NASA/Cory Huston

Leerlo en español aquí

The core stage of the Space Launch System (SLS) rocket for NASA’s Artemis I mission has been placed on the mobile launcher in between the twin solid rocket boosters inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. The boosters attach at the engine and intertank sections of the core stage. Serving as the backbone of the rocket, the core stage supports the weight of the payload, upper stage, and crew vehicle, as well as carrying the thrust of its four engines and two five-segment solid rocket boosters.

After the core stage arrived on April 27, engineers with Exploration Ground Systems and contractor Jacobs brought the core stage into the VAB for processing work and then lifted it into place with one of the five overhead cranes in the facility.

Once the core stage is stacked alongside the boosters, the launch vehicle stage adapter, which connects the core stage to the interim cryogenic propulsion stage (ICPS), will be stacked atop the core stage and quickly followed by the ICPS.

Artemis I will be an uncrewed test of the Orion spacecraft and SLS rocket as an integrated system ahead of crewed flights to the Moon. Under the Artemis program, NASA aims to land the first woman and first person of color on the Moon in 2024 and establish sustainable lunar exploration by the end of the decade.

NASA’s Space Launch System Receives Another Major Boost

SLS solid rocket boosters
The solid rocket boosters will power the first flight of NASA’s Space Launch System rocket on the Artemis I mission. Photo credit: NASA/Kim Shiflett

The third of five sets of solid rocket boosters for NASA’s Space Launch System (SLS) rocket were placed on the mobile launcher inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The middle segments, painted with the iconic “worm” logo, were lifted onto the launcher by Jacobs and Exploration Ground Systems engineers using the VAB’s 325-ton crane.

The twin boosters will power the first flight of the agency’s new deep space rocket on its first Artemis Program mission. Artemis I will be an uncrewed flight to test the SLS rocket and Orion spacecraft as an integrated system ahead of crewed flights.