Live coverage of NASA’s Space Launch System (SLS) Flight Support Booster-1 (FSB-1) ground test has begun on NASA Television and the agency’s website. The test fire is scheduled to begin at 3:05 EDT. Systems checks are underway for the full-scale, five-segment solid rocket booster ground test at Northrop Grumman’s test facility on Promontory, Utah. This is the first in a series of tests that are examining motor performance for potential new materials and processes that may be incorporated in the booster after the Artemis III lunar mission.
Author: NASA
Space Launch System Booster Test for Artemis Missions
NASA’s Space Launch System (SLS) will conduct a test of Flight Support Booster-1 (FSB-1) Sept. 2, 2020 at Northrop Grumman’s test facility in Promontory, Utah. Northrop Grumman manufactures the two five-segment solid rocket boosters that will provide more than 75 percent of the vehicle’s thrust for the first two minutes of ascent. Live coverage of the test will begin at 2:45 p.m. EDT on NASA Television and the agency’s website.
FSB-1 is a full-scale, five-segment solid rocket booster ground test that supports flights of NASA’s Space Launch System. This is the same model booster that will power the SLS rocket and Orion capsule on the Artemis I mission. The test is scheduled for 1:05 MDT, 3:05 p.m. EDT and has a planned duration of a little over 2 minutes, the same amount of time that the boosters power the rocket during liftoff and flight. The objective of the test is to confirm motor performance and manufacturing quality for potential new materials and processes that will be used in boosters supporting future Artemis missions.
More details about the FSB-1 test and SLS solid rocket boosters:
Eyes Forward as Artemis Missions Set to Begin Next Year
Jumping headfirst into the Artemis program has been one of the highlights in my transition as the associate administrator for human spaceflight. With an ongoing COVID-19 pandemic, there was little time for a transition period as mission essential work needed to continue as safely as possible.
Already within my short time on the job, NASA is checking-off key milestones and marching swiftly toward Artemis I. That mission, the first uncrewed flight test of our powerful Space Launch System (SLS) rocket and Orion spacecraft, is just a little more than a year away from launch.
I remain incredibly impressed by our team’s commitment to landing the first woman and next man on the Moon in 2024, and we all know that Artemis I is a critical step toward realizing that goal. A lot of the hard work is behind us, but it is not done yet. We’re gaining momentum– and it is tangible across the agency.
Already this year, NASA has finished modifications and upgrades to ready Launch Pad 39B at our Kennedy Space Center in Florida for the mission. Teams there have also:
- Simulated portions of the launch countdown with a realistic run-through of the terminal count
- Delivered the launch vehicle stage adapter, which connects the core stage and the upper stage of the rocket
- Conducted an Orion recovery test in the Pacific Ocean, validating timelines for recovery operations
- Practiced stacking operations with pathfinder segments for the solid rocket boosters
- Received booster segments for the mission to begin processing for launch
The agency also completed a rigorous test campaign ahead of schedule on the Orion spacecraft, subjecting it to the extreme temperatures and electromagnetic conditions expected during flight. Orion is now in final assembly and checkout for launch, including installation of the spacecraft’s four solar arrays.
On the SLS side of the house, NASA completed structural testing on the upper part of the rocket and four core stages structures. The rocket’s core stage for the first mission is the last piece of hardware that remains to be delivered to Kennedy. It is currently secured in a test stand at NASA’s Stennis Space Center in Mississippi and has completed four of the eight tests in the Green Run test series.
We are currently working our way through the fifth test to check out the thrust vector controls and related hydraulics. While we keep an eye on hurricane season, we continue to strive to conduct the final test by the end of October with the current pace of testing. During that test, engineers will fire all four RS-25 engines simultaneously, aiming to drain the fueled tanks in eight minutes, just as during flight. After the hot fire test, crews will refurbish, inspect, and configure the stage for shipment to Kennedy. The next time the rocket’s engines ignite, Artemis I will be taking flight.
Prior to the COVID-19 pandemic, NASA also completed a detailed cost and schedule assessment for Artemis I and established a new agency commitment for launch readiness by November 2021. While it is too early to predict the full impact of COVID-19, we are confident a November 2021 date is achievable with the recent pace of progress, and a successful Green Run hot fire test will enable us to better predict a target launch date for the mission.
Taking this new launch readiness date into account, NASA also aligned the development costs for the SLS and Exploration Ground Systems programs through Artemis I and established new cost commitments. The new development baseline cost for SLS is $9.1 billion, and the commitment for the initial ground systems capability to support the mission is now $2.4 billion. NASA’s cost and schedule commitment for Orion currently remains within original targets and is tied to demonstrating the capability to fly crew on the Artemis II mission by 2023.
NASA has notified Congress of these new commitments, and we are working at the best possible pace toward launch, including streamlining operational flow at Kennedy and assessing opportunities to further improve the efficiency of our integration activities. Now that the majority of the design development is done, as well as the first time build and an extensive test program, a lot of effort is behind us. We are well into builds for future missions, and we are seeing significantly improved build rates, high quality work, and efficiencies across the board. Moving forward, we aim to continue to reduce production costs for the world’s most capable launch system, as we take on new challenges of our lunar exploration program.
We remain focused on the work ahead under the Artemis program, for the first SLS and Orion mission as well as future missions with crew, including Artemis III that will send the next astronauts to the surface of the Moon. With those kind of goals, there’s nowhere else in the world I’d rather be working. And yet, Artemis plans are just one of many great things underway within human spaceflight and across the agency – with much more ahead.
NASA is on track to achieve great things with robots, technology and humans on and around the Moon. From the Moon, and soon to Mars, I hope you’re ready to jump in too.
-Kathy Lueders
First Piece of Artemis III Orion Delivered to NASA
The first piece of the Orion spacecraft’s pressure vessel for Artemis III – the mission that will land the first woman and next man on the Moon in 2024 – has arrived at NASA. The cone panel that will house the windows astronauts will use to view the Moon was designed by Orion’s lead contractor, Lockheed Martin, and manufactured by AMRO Fabricating Corp., of South El Monte, California. It arrived at NASA’s Michoud Assembly Facility in New Orleans on Aug. 21. In the coming months, the other six elements of the pressure vessel will arrive at Michoud where they will be welded together to build the underlying structure of Orion. The pressure vessel is Orion’s primary structure that holds the pressurized atmosphere astronauts will breathe and work in while in the vacuum of deep space. Orion, the Space Launch System, and Exploration Ground Systems programs are foundational elements of the Artemis program, beginning with Artemis I, the first integrated flight test of Orion and SLS next year. Artemis II will follow as the first crewed mission, taking humans farther into space than ever before.
Orion Window Panel Complete for Front-Row View on Artemis Moon Mission
As NASA’s Orion spacecraft approaches the Moon on the Artemis III mission to put the first woman and next man on the lunar surface, the crew will get a glimpse through the spacecraft’s windows.
The first element machined for the Artemis III Orion crew module – a cone panel with openings for windows which will provide that spectacular view – was designed by Orion’s lead contractor, Lockheed Martin, and manufactured by AMRO Fabricating Corp., of South El Monte, California. The completed panel is on its way to NASA’s Michoud Assembly Facility near New Orleans, Louisiana, where engineers will weld it with other panels as part of Orion’s pressure vessel.
>>Read more
NASA Begins Installing Orion Adapter for First Artemis Moon Flight
Technicians at NASA’s Kennedy Space Center in Florida are working to install an adapter that will connect the Orion spacecraft to its rocket for the Artemis I mission around the Moon. This is one of the final major hardware operations for Orion inside the Neil Armstrong Operations and Checkout Building prior to integration with the Space Launch System rocket.
The spacecraft adapter cone (seen at the bottom of the stack pictured above) connects to the bottom of Orion’s service module and will later join another adapter connected to the top of the rocket’s interim cryogenic propulsion stage. During the process to install the cone on Orion, the spacecraft is lifted out of the Final Assembly and Systems Testing, or FAST, cell and placed into the Super Station support fixture.
>>Read more
NASA Motor Test Helps Evaluate New SLS Materials
Every detail that goes into space exploration matters. While habitat design or making sure a rocket is powerful enough to launch supplies are obviously important, what may be less apparent are the smaller things, including the solvents used in manufacturing materials for spaceflight.
On Aug. 6, a 22-second hot fire test in the East Test Area at NASA’s Marshall Space Flight Center in Huntsville, Alabama, helped NASA and Northrop Grumman Corporation in Promontory, Utah – the solid rocket booster prime contractor – evaluate a new nozzle material for the Space Launch System (SLS) solid rocket boosters. These boosters produce more than 75 percent of the power to launch the rocket.
The nozzle construction enables the boosters to provide consistent performance while withstanding the 5,000 degree Fahrenheit flame produced as the solid fuel is burned to launch the rocket. Such material changes are checked out in phases from sub-scale to full-scale tests and this 24-inch motor was a significant step in that process. Using a 24-inch-diameter, 20-foot-long sub-scale test motor that burned nearly 1,800 pounds of propellant and produced 23,000 pounds of thrust, the team collected data to help verify use of the solvent on future SLS flights beyond Artemis III.
“This 24-inch motor test is to evaluate the material in a solid rocket motor environment and make sure that we don’t get any unexpected changes in how it performs,” said Tim Lawrence, manager for motor and booster separation motor systems at Marshall.
While the solid rocket boosters that will be used on NASA’s Space Launch System – which this test supports – are 177 feet tall and 12 feet in diameter, the motor used in the test is still large enough to produce valuable data.
“This booster is only 24-inches but the ability to fire it in a test stand helps us get the data we need to confirm that we want to test it in a larger, full-scale test,” Dennis Strickland, the test conductor said.
In addition to data about the solvent’s effects on the material during motor operation, engineers also collected information about its behavior during booster assembly.
“The 24-inch motor is large enough that we were able to use the same processes to manufacture the nozzle as are used on the full-scale motor and that gives us confidence it will provide a good indication of full-scale performance,” Lawrence explained.
While the verification test was to primarily support the SLS rocket, the test data may also be used by other government agencies to help advance their solid rocket propulsion technology as NASA and the agencies routinely share data with other government agencies and industry. Data sharing enhances capabilities and maximizes the return on investment for the taxpayer.
NASA’s SLS booster is based on three decades of knowledge and experience gained with the space shuttle boosters and has been updated with the latest technology. The agency is working to design, develop, and test next-generation boosters that will power SLS flights after all available shuttle-era hardware is expended. NASA has cast segments for the Artemis I and Artemis II lunar missions, the first two SLS flights, and has begun casting the Artemis III mission. Northrop Grumman delivered the segments for Artemis I to NASA’s Kennedy Space Center in Florida on June 15.
SLS and the Orion spacecraft, along with the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration and the Artemis program, which will send the first woman and next man to the lunar surface by 2024. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon on a single mission.
Four Down, Four to Go: Artemis I Rocket Moves Closer to Hot Fire Test
The Space Launch System (SLS) rocket core stage for the Artemis I lunar mission has successfully completed its first four Green Run tests and is building on those tests for the next phase of checkout as engineers require more capability of the hardware before hot-firing the stage and its four powerful engines.
On Aug. 5, engineers at NASA’s Stennis Space Center near Bay St Louis, Mississippi, where the stage is loaded into the B-2 Test Stand, completed the fourth of eight planned tests of the 212-foot-tall core stage. For Test 4, engineers performed the initial functional checkout of the main propulsion system components to verify command and control operability (valve response, timing, etc.) and performed leak checks on the core stage-to-facility umbilical fluid and gas connections.
Green Run is a demanding series of eight tests and nearly 30 firsts: first loading of the propellant tanks, first flow through the propellant feed systems, first firing of all four engines, and first exposure of the stage to the vibrations and temperatures of launch.
>>Read more
First Pieces of Future Gateway Living Quarters
The first pieces of flight hardware for Gateway’s Habitation and Logistics Outpost (HALO) have arrived at Thales Alenia Space Italy (TASI) sent by NASA’s HALO contractor Northrop Grumman. These forgings are the base metal that is used to create the pressure shell, barrel sections, and interface rings for HALO. The manufacturing process is based on the same process employed by TASI in support of Northrop Grumman’s Cygnus spacecraft, which is currently being used to deliver cargo to the International Space Station. HALO will be the initial pressurized living quarters where astronauts spend their time during expeditions aboard the orbiting Gateway. About the size of a small studio apartment, it can support a crew of four for up to 30 days when NASA’s Orion spacecraft is docked to the Gateway.
Learn more about Gateway.
Key Connection for Artemis I Arrives at Kennedy
The second to last piece of hardware for the Artemis I test flight around the Moon has arrived at the agency’s Kennedy Space Center in Florida. The launch vehicle stage adapter (LVSA) connects the core stage of NASA’s Space Launch System (SLS) rocket to the upper stage, called the Interim Cryogenic Propulsion Stage. The cone-shaped connector also helps protect the RL10 engine housed in the upper stage, which will provide the power necessary to leave Earth’s orbit and send the Orion spacecraft on its journey to the Moon.
>>Read more