Orion’s Artemis III European Service Module Joined with Crew Module Adapter

Teams began connecting the European Service Module 3 to the crew module adapter.
Teams began connecting the European Service Module 3 to the crew module adapter on Tuesday, Sept. 24, 2024, inside the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The integrated hardware will provide propulsion, thermal control, and electrical power for NASA’s Orion spacecraft set to carry four NASA astronauts to the lunar South Pole region of the Moon for the agency’s Artemis III campaign. Photo credit: NASA/Kim Shiflett

Teams have joined the Artemis III European Service Module and crew module adapter for NASA’s Orion spacecraft inside the Neil A. Armstrong Operations and Checkout (O&C) Building at NASA’s Kennedy Space Center in Florida, following the completion of the Integration Readiness Review on Sept. 17.

The ESA (European Space Agency)-provided European Service Module is assembled by Airbus in Bremen, Germany, from parts made in 10 European countries and the United States. It acts as the driving force behind the Orion spacecraft for deep space exploration, providing essential propulsion, thermal control, and electrical power. The module also will supply astronauts with vital resources like water and oxygen, ensuring they’re well-supported during their journey to the Moon.

The crew module adapter bridges electrical, data, and fluid systems between Orion’s crew and service modules with an umbilical connector, and it also houses electronic equipment for communications, power, and control.

The integrated European Service Module and crew module adapter, which together make the service module, will undergo final inspections before engineers move it to the clean room inside the spaceport’s O&C high bay for welding operations. Later in the production flow, the Artemis III crew module will be connected to the service module via the crew module adapter.

The European Service Module is managed by the Orion team at NASA’s Glenn Research Center in Cleveland. The arrival of the Artemis III hardware to Kennedy marks the first time two Orion service modules have been inside the O&C facility at the same time during the agency’s Artemis campaign. The Artemis II service module is already mated to the crew module, and engineers continue to process the integrated modules inside the facility ahead of the test flight.

Rocket Hardware for Future Artemis Flights Moved to Barge for Delivery to NASA’s Kennedy Space Center

NASA is making strides with the Artemis campaign as key components for the SLS (Space Launch System) rocket continue to make their way to NASA’s Kennedy Space Center in Florida. Teams with NASA and Boeing loaded the core stage boat-tail for Artemis III and the core stage engine section for Artemis IV onto the agency’s Pegasus barge at Michoud Assembly Facility in New Orleans on Aug. 28.

A circular yellow core stage of the SLS rocket is being loaded onto the Pegasus Barge.
The core stage engine section of the SLS (Space Launch System) rocket for Artemis IV is loaded onto the agency’s Pegasus barge at Michoud Assembly Facility in New Orleans on Aug. 28. The core stage hardware will be moved NASA’s to Kennedy’s Space Systems Processing Facility for outfitting. Photo Credit: NASA/Justin Robert

The core stage hardware joins the launch vehicle stage adapter for Artemis II, which was moved onto the barge at NASA’s Marshall Space Flight Center in Huntsville, Alabama, on Aug. 21. Pegasus will ferry the multi-mission rocket hardware more than 900 miles to the Space Coast of Florida. Teams with the NASA’s Exploration Ground Systems Program will prepare the launch vehicle stage adapter for Artemis II stacking operations inside the Vehicle Assembly Building, while the core stage hardware will be moved to Kennedy’s Space Systems Processing Facility for outfitting. Beginning with Artemis III, core stages will undergo final assembly at Kennedy.

The launch vehicle stage adapter is essential for connecting the rocket’s core stage to the upper stage. It also shields sensitive avionics and electrical components in the rocket’s interim cryogenic propulsion stage from the intense vibrations and noise of launch.

The boat-tail and engine section are crucial for the rocket’s functionality. The boat-tail extends from the engine section, fitting snugly to protect the rocket’s engines during launch. The engine section itself houses more than 500 sensors, 18 miles of cables, and key systems for fuel management and engine control, all packed into the bottom of the towering 212-foot core stage.

NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

For more on NASA SLS, visit: https://www.nasa.gov/sls

SpaceX Completes Engine Tests for NASA’s Artemis III Moon Lander

NASA is working with SpaceX to develop its Starship human landing system (HLS) for use during the Artemis III and Artemis IV missions to land American astronauts near the South Pole of the Moon. The Starship HLS will be powered by two variants of the company’s Raptor engines—one optimized to operate in atmospheric pressure at sea-level and one optimized to operate in space, or in a vacuum, where there is no atmosphere.

Last month, SpaceX demonstrated a vacuum-optimized Raptor’s performance through a test that successfully confirmed the engine can be started in the extreme cold conditions resulting from extended time in space. One challenge that differentiates Artemis missions from those in low Earth orbit is that the landers may sit in space without firing for an extended period of time, causing the temperature of the hardware to drop to a level below what they would experience on a much shorter low Earth orbit mission.

One of the first testing milestones SpaceX completed under its Artemis III contract in Nov. 2021 was also an engine test, demonstrating Raptor’s capability to perform a critical phase of landing on the Moon. In a 281-second-long test firing, Raptor demonstrated the powered descent portion of the mission, when the Starship HLS leaves its orbit over the lunar surface and begins its descent to the Moon’s surface to land. The test had two goals: to show Raptor’s ability to change the level of engine power over time, known as its throttle profile, and for the engine to burn the full length of time of the powered descent phase. The successful test provided NASA with early confidence in the company’s engine development.

The 281-second throttle test demonstrated the engine’s ability to meet the demands of a descent burn to the lunar surface.
The 281-second throttle test demonstrated the engine’s ability to meet the demands of a descent burn to the lunar surface. Credit: SpaceX

Testing critical technologies and hardware under simulated and actual flight conditions is key for the development of Artemis Moon landers. These tests provide early and mission-like validation of the systems necessary for carrying astronauts to and from the lunar surface. Data reviews following these tests provide NASA with continually increasing confidence in U.S. industry’s readiness for the mission. SpaceX’s Raptor engines will next be put to the test during the company’s second integrated flight test of Starship and Super Heavy.