Final Launch Abort System Motor Arrives for Artemis II Crewed Mission

The Artemis II attitude control motor inside the Launch Abort System Facility at Kennedy Space Center on Aug. 28, 2020.
The attitude control motor for the Artemis II mission arrives in the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida on Aug. 28, 2020. Photo credit NASA/Ben Smegelsky

The last of three motors required to assemble the Launch Abort System for NASA’s Artemis II mission–the first crewed mission of the Orion spacecraft–arrived at Kennedy Space Center in Florida on August 28. The attitude control motor (ACM) was delivered by truck from Northrop Grumman’s manufacturing facility in Maryland, to the Launch Abort System Facility (LASF) at Kennedy.

During launch of Orion atop the agency’s Space Launch System rocket, the LAS motors work together to separate the spacecraft from the rocket in the unlikely event of an emergency during launch. The LAS includes three motors – the launch abort motor, the jettison motor, and the attitude control motor—that once activated, will steer the spacecraft carrying the astronauts to safety. The launch abort and attitude control motors were manufactured by Northrop Grumman; the jettison motor was manufactured by Aerojet Rocketdyne.

The ACM operates to keep Orion’s crew module on a controlled flight path in the event it needs to jettison and steer away from the rocket. It then reorients the crew module for parachute deployment and landing. The motor consists of a solid propellant gas generator, with eight proportional valves equally spaced around the outside of the 32-inch diameter motor. Together, the valves can exert up to 7,000 pounds of steering force to the vehicle in any direction upon command from the crew module.

Inside the LASF, the motor will be placed on a special trailer for future integration with the rest of the LAS elements. It will remain in the LASF midbay, where the Artemis I LAS is being integrated with its designated crew and service module for its mission next year.

Artemis II is the first crewed flight in a series of increasingly complex missions to the Moon that will lay the foundation for exploration of Mars and beyond. Artemis II will confirm all of the Orion spacecraft’s systems operate as designed in the actual environment of deep space with astronauts aboard. As part of the Artemis program, NASA will send the first woman and next man to the Moon in 2024.

First Piece of Artemis III Orion Delivered to NASA

Artemis III cone panel arrives at NASA Michoud Assembly Facility. 

The first piece of the Orion spacecraft’s pressure vessel for Artemis III – the mission that will land the first woman and next man on the Moon in 2024 – has arrived at NASA. The cone panel that will house the windows astronauts will use to view the Moon was designed by Orion’s lead contractor, Lockheed Martin, and manufactured by AMRO Fabricating Corp., of South El Monte, California. It arrived at NASA’s Michoud Assembly Facility in New Orleans on Aug. 21. In the coming months, the other six elements of the pressure vessel will arrive at Michoud where they will be welded together to build the underlying structure of Orion. The pressure vessel is Orion’s primary structure that holds the pressurized atmosphere astronauts will breathe and work in while in the vacuum of deep space. Orion, the Space Launch System, and Exploration Ground Systems programs are foundational elements of the Artemis program, beginning with Artemis I, the first integrated flight test of Orion and SLS next year. Artemis II will follow as the first crewed mission, taking humans farther into space than ever before.

Artemis I Launch Team Fires Up Fueling Simulation

The Artemis I launch team rehearses loading the SLS rocket with propellants on Aug. 18, 2020.
Inside the Launch Control Center’s Firing Room 1 at NASA’s Kennedy Space Center in Florida, members of the Artemis I launch team rehearse the procedures for fueling the Space Launch System (SLS) rocket with super cold propellants, or cryogenics, on Aug. 18, 2020. Photo credit: NASA/Chad Siwik

The launch team for Artemis I is back in the firing room at NASA’s Kennedy Space Center for more practice. The team conducted a simulation on the procedures for cryogenic loading, or fueling the Space Launch System rocket with super cold propellants. During simulations potential problems are introduced to the team to test the application of firing room tools, processes, and procedures.

The Exploration Ground Systems team of launch controllers who will oversee the countdown and liftoff of the SLS rocket and Orion spacecraft will be practicing the procedures several more times ahead of launch. Special protocols have been put in place to keep personnel safe and healthy, including limiting personnel in the firing room, using acrylic dividers and adjusting assigned seating for the cryo team.

Orion Window Panel Complete for Front-Row View on Artemis Moon Mission

As NASA’s Orion spacecraft approaches the Moon on the Artemis III mission to put the first woman and next man on the lunar surface, the crew will get a glimpse through the spacecraft’s windows.

The first element machined for the Artemis III Orion crew module – a cone panel with openings for windows which will provide that spectacular view – was designed by Orion’s lead contractor, Lockheed Martin, and manufactured by AMRO Fabricating Corp., of South El Monte, California. The completed panel is on its way to NASA’s Michoud Assembly Facility near New Orleans, Louisiana, where engineers will weld it with other panels as part of Orion’s pressure vessel.

>>Read more

NASA Begins Installing Orion Adapter for First Artemis Moon Flight

Technicians at NASA’s Kennedy Space Center in Florida are working to install an adapter that will connect the Orion spacecraft to its rocket for the Artemis I mission around the Moon. This is one of the final major hardware operations for Orion inside the Neil Armstrong Operations and Checkout Building prior to integration with the Space Launch System rocket.

The spacecraft adapter cone (seen at the bottom of the stack pictured above) connects to the bottom of Orion’s service module and will later join another adapter connected to the top of the rocket’s interim cryogenic propulsion stage. During the process to install the cone on Orion, the spacecraft is lifted out of the Final Assembly and Systems Testing, or FAST, cell and placed into the Super Station support fixture.

>>Read more

Heat Shield Milestone for First Artemis Mission with Crew

Image Credit: NASA/Isaac Watson

Technicians at NASA’s Kennedy Space Center in Florida recently finished meticulously applying more than 180 blocks of ablative material to the heat shield for the Orion spacecraft set to carry astronauts around the Moon on Artemis II.

The heat shield is one of the most critical elements of Orion and protects the capsule and the astronauts inside from the nearly 5,000 degrees Fahrenheit temperatures, about half as hot at the Sun, experienced during reentry through Earth’s atmosphere when coming home from lunar velocities.

Prior to installation, several large blocks of the ablative material called AVCOAT were produced at the agency’s Michoud Assembly Facility in New Orleans. They were then shipped to Kennedy and machined into 186 unique smaller blocks before being applied by the technicians onto the heat shield’s underlying titanium skeleton and carbon fiber skin.

To continue preparing the heat shield, engineers will conduct non-destructive evaluations to look for voids in the bond lines, as well as measure the steps and gaps between the blocks. The gaps will be filled with adhesive material and then reassessed. The heat shield will then undergo a thermal test after which it will be sealed, painted and then taped to help weather on-orbit thermal conditions. Once all testing has been completed, later this year the heat shield will be installed and bolted to the crew module.

NASA is working to land the first woman and the next man on the Moon by 2024. Orion, along with NASA’s Space Launch System (SLS) rocket, the Human Landing System and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. Artemis II will be the first crewed mission of Orion atop the SLS rocket.

Orion’s ‘Twin’ Completes Structural Testing for Artemis I Mission

The Orion structural test article forward bay cover jettison testing in progress at Lockheed Martin near Denver.

Engineers have completed testing on a duplicate of Orion called the Structural Test Article (STA), needed to verify the spacecraft is ready for Artemis I — its first uncrewed test flight. NASA and its prime contractor, Lockheed Martin, built the STA to be structurally identical to Orion’s main spacecraft elements: the crew module, service module and launch abort system.

The STA testing required to qualify Orion’s design began in early 2017 and involved 20 tests, using six different configurations — from a single element, to the entire full stack — and various combinations in between. At completion, the testing verified Orion’s structural durability for all flight phases of Artemis I.

>>Read more

Hardware on the Move for Artemis II

The Orion crew module and its adapter for the first crewed Artemis mission are undergoing testing and maintenance at NASA’s Kennedy Space Center. On Artemis II, Orion will launch atop the Space Launch System rocket and carry astronauts around the Moon and back to Earth.

The Orion capsule that will fly astronauts on the Artemis II mission.
This Orion crew module adapter that will connect the capsule to the Space Launch System rocket.