NASA Stacks First Artemis II Segment on Mobile Launcher

Engineers and technicians with the Exploration Ground Systems Program stack the first Moon rocket segment – the left aft assembly for the Artemis II SLS (Space Launch System) solid rocket booster onto mobile launcher 1 inside the Vehicle Assembly Building at NASA’s Kennedy Space Center on Wednesday, Nov. 20, 2024.
Engineers and technicians with the Exploration Ground Systems Program stack the first Moon rocket segment – the left aft assembly for the Artemis II SLS (Space Launch System) solid rocket booster onto mobile launcher 1 inside the Vehicle Assembly Building at NASA’s Kennedy Space Center on Wednesday, Nov. 20, 2024. Photo credit: NASA/Glenn Benson

Engineers and technicians inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida stacked the first segment of the Artemis II SLS (Space Launch System) rocket boosters onto mobile launcher 1.

Comprising 10 segments total – five segments for each booster – the SLS solid rocket boosters arrived via train to NASA Kennedy in September 2023 from Northrop Grumman’s manufacturing facility in Utah. The booster segments underwent processing in the spaceport’s Rotation, Processing and Surge Facility before being transferred to the NASA’s iconic VAB for stacking operations.

Technicians inside the 525-foot-tall facility used an overhead crane to lift the left aft assembly onto the mobile launcher. Up next, workers will install the right aft assembly, placing it carefully onto the 380-foot-tall structure used to process, assemble, and launch the SLS rocket and Orion spacecraft.

The first components of the Artemis II Moon rocket to be stacked, the solid rocket boosters will help support the remaining rocket segments and the Orion spacecraft during final assembly. At launch, the 177-foot-tall twin solid rocket boosters provide more than 75 percent of the total SLS thrust during liftoff from NASA Kennedy’s Launch Pad 39B.

NASA’s Rocket On Roll: Core Stage Arrives at Vehicle Assembly Building

After completing its journey from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus barge, teams with Exploration Ground Systems (EGS) transport the agency’s powerful SLS (Space Launch System) core stage to NASA’s Kennedy Space Center’s Vehicle Assembly Building in Florida on Tuesday, July 23, 2024. Once inside, SLS will be prepared for integration atop the mobile launcher ahead of the Artemis II launch.
After completing its journey from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus barge, teams with Exploration Ground Systems (EGS) transport the agency’s powerful SLS (Space Launch System) core stage to NASA’s Kennedy Space Center’s Vehicle Assembly Building in Florida on Tuesday, July 23, 2024. Photo credit: NASA/Isaac Watson

NASA’s SLS (Space Launch System) rocket core stage for the Artemis II mission is inside the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida.

Tugboats and towing vessels moved the barge and core stage 900-miles to the Florida spaceport from NASA’s Michoud Assembly Facility in New Orleans, where it was manufactured and assembled.

Team members with NASA’s Exploration Ground Systems Program safely transferred the 212-foot-tall core stage from the agency’s Pegasus barge, which arrived at NASA Kennedy’s Complex 39 turn basin wharf on July 23, onto the self-propelled module transporter, which is used to move large elements of hardware. It was then rolled to the Vehicle Assembly Building transfer aisle where teams will process it until it is ready for rocket stacking operations.

In the coming months, teams will integrate the rocket core stage atop the mobile launcher with the additional Artemis II flight hardware, including the twin solid rocket boosters, launch vehicle stage adapter, and the Orion spacecraft.

The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.

Artemis II Orion Crew and Service Modules Joined Together

Mating of the crew and service modules for the Artemis II Orion spacecraft was recently completed at NASA’s Kennedy Space Center in Florida.
Intergration of the crew and service modules for the Artemis II Orion spacecraft was recently completed at NASA’s Kennedy Space Center in Florida. Photo credit: NASA

On Oct. 19, the Orion crew and service modules for the Artemis II mission were joined together inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.

After successfully completing hardware installations and testing over the past several months, engineers connected the two major components of Orion that will fly NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, along with CSA (Canadian Space Agency) astronaut Jeremy Hansen on a mission around the Moon and bring them home safely.

Now that the crew and service modules are integrated, the team will power up the combined crew and service module for the first time. After power on tests are complete, Orion will begin altitude chamber testing, which will put the spacecraft through conditions as close as possible to the environment it will experience in the vacuum of deep space.

Artemis I Stack Ready to Rock(et) and Roll

SLS rocket
In this view looking up in High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, all of the work platforms that surround the Artemis I Space Launch System (SLS) and Orion spacecraft are fully retracted on March 16, 2022. The Artemis I stack atop the mobile launcher will roll out to Launch Complex 39B atop the crawler-transporter 2 for a wet dress rehearsal ahead of launch. Photo credits: NASA/Glenn Benson

NASA’s new Moon rocket stands poised inside Kennedy Space Center’s iconic Vehicle Assembly Building ahead of its first journey to the launch pad. Comprised of NASA’s Space Launch System (SLS) rocket and Orion spacecraft, and sitting on its mobile launcher, the Artemis I Moon-bound rocket is ready to roll March 17 to Launch Complex 39B for its wet dress rehearsal test targeted to begin on April 1.

The dress rehearsal will demonstrate the team’s ability to load more than 700,000 gallons of cryogenic, or super-cold, propellants into the rocket at the launch pad, practice every phase of the launch countdown, and drain propellants to demonstrate safely standing down on a launch attempt. The test will be the culmination of months of assembly and testing for SLS and Orion, as well as preparations by launch control and engineering teams, and set the stage for the first Artemis launch.

The uncrewed Artemis I mission is the first flight of the SLS rocket and Orion spacecraft together. Future missions will send people to work in lunar orbit and on the Moon’s surface. With the Artemis missions, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and Orion, along with the commercial human landing system and the Gateway that will orbit the Moon, are NASA’s backbone for deep space exploration.

Live coverage for rollout begins at 5 p.m. EDT and will include live remarks from NASA Administrator Bill Nelson and other guests. Coverage will air on NASA Television, the NASA app, and the agency’s website.

Live, static camera views of the debut and arrival at the pad will be available starting at 4 p.m. EDT on the Kennedy Newsroom YouTube channel.

First Platforms are Retracted Ahead of Artemis I First Rollout to Launch Pad

Teams retracted the first two of 20 platforms surrounding the Space Launch System rocket and Orion spacecraft that allow work on the integrated system in High Bay 3 inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. The first platforms to be retracted – which move like hydraulic kitchen drawers when moved – are those located near the launch abort system on Orion in preparation for rollout to Launch Complex 39B for the Artemis I wet dress rehearsal. Photo credits: NASA/Kim Shiflett

The Artemis I Moon rocket is getting closer to rolling out of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida for the first time.

The first two of 20 platforms surrounding the Space Launch System (SLS) and Orion spacecraft that allow work on the integrated system inside the building were retracted for roll out to Launch Complex 39B. Teams retracted the platforms, which move like hydraulic kitchen drawers, near the launch abort system on the Orion spacecraft in anticipation of the roll.

Teams are continuing to install instrumentation on the SLS’s twin solid rocket boosters inside the VAB. Thousands of sensors and special instruments will monitor the rocket and spacecraft as they roll out for the first time on March 17 and make the four-mile journey to Launch Complex 39B, arriving on March 18. Engineers will capture as much data as possible on the performance of all the systems that are part of the rocket, spacecraft, ground systems used for rollout, and on the pad for propellant loading and other activities. Once all the rocket and spacecraft systems are inspected, the 322-foot-tall rocket will roll to the launch pad for the wet dress rehearsal test, which is scheduled to occur approximately two weeks after it arrives to 39B.

The last steps remaining before rollout include inspecting each piece of the rocket and spacecraft, including physically entering different components of SLS and, step-by-step, making sure SLS and Orion are ready for the trip to the launch pad. As inspections continue, the Kennedy ground systems team is working to remove equipment and scaffolding away from the rocket and will continue retracting the platforms until the entire rocket is revealed.

Artemis I Update: Engine Controller Resolution, Closeout Tasks Continue

Inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the work platforms have been retracted from around the Artemis I Space Launch System on Sept. 20, 2021. All 10 levels of platforms were extended and retracted as part of an umbilical test. During the test, several umbilical arms on the mobile launcher were extended to connect to the SLS rocket. They swung away from the launch vehicle, just as they will on launch day. NASA and Jacobs teams will continue conducting tests inside the VAB before transporting the Orion spacecraft to the assembly building and stacking it atop the SLS, completing assembly of the rocket for the Artemis I mission. Artemis I will be the first integrated test of the SLS and Orion spacecraft. In later missions, NASA will land the first woman and the first person of color on the surface of the Moon, paving the way for a long-term lunar presence and serving as a steppingstone on the way to Mars.
Inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the work platforms have been retracted from around the Artemis I Space Launch System on Sept. 20, 2021. All 10 levels of platforms were extended and retracted as part of an umbilical test. During the test, several umbilical arms on the mobile launcher were extended to connect to the SLS rocket. They swung away from the launch vehicle, just as they will on launch day. NASA and Jacobs teams will continue conducting tests inside the VAB before transporting the Orion spacecraft to the assembly building and stacking it atop the SLS, completing assembly of the rocket for the Artemis I mission. Photo credit: NASA/Frank Michaux

Since replacing an engine controller on RS-25 engine number four that is on the Space Launch System (SLS) rocket core stage, NASA, and lead engines contractor Aerojet Rocketdyne, have performed a series of tests to ensure the engines and controllers are ready to support the Artemis I mission.  All four engine controllers performed as expected during power up, as part of the Artemis I Core Stage engineering tests.

Aerojet Rocketdyne and its manufacturer of the engine flight controller, conducted numerous tests on the faulty engine four controller and determined the cause to be a faulty memory chip. The device is used only during the controller start-up sequence and has no impact on controller operations beyond that point. There is no indication of faulty memory chips on the other three engines, and therefore no related constraints to the wet dress rehearsal or launch.

Kennedy teams are completing remaining SLS pre-flight diagnostic tests and hardware closeouts, including testing the flight termination system on the SLS and installing instrumentation on the twin solid rocket boosters, in advance of rolling the rocket and spacecraft to Launch Pad 39B for the first time next month for a final test before launch. This final test, known as the wet dress rehearsal, will run the launch team through operations to load propellant into the rocket’s tanks and conduct a full launch countdown.

During the test at the launch pad, engineers will be on duty in the Launch Control Center and in other stations where they will work during the Artemis I launch. They will capture as much data as possible on the performance of all the systems that are part of SLS and the Orion spacecraft as well as the Kennedy ground systems. NASA will set a target launch date after a successful wet dress rehearsal test.

Artemis I Progress Continues in the VAB

On Jan. 11, engineers and technicians with Exploration Ground Systems retracted and extended the Orion spacecraft crew access arm as part of ongoing work leading up to the Artemis I wet dress rehearsal targeted for late February.

The arm rotates from its retracted position and interfaces with the Space Launch System (SLS) rocket at the Orion crew hatch location to provide entry and exit for the Orion crew module during operations in the Vehicle Assembly Building and at the launch pad. On crewed Artemis missions, the access arm also provides entry and exit for astronauts. The arm retracts from the Orion spacecraft before launch.

The team continues to complete final testing and closeouts of SLS and Orion. Check back for updates on the agency Artemis blog.

Orion Points at the Moon with Launch Abort Tower

Teams with NASA’s Exploration Ground Systems (EGS) and contractor Jacobs integrated the launch abort system (LAS) with the Orion spacecraft inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida on July 23, 2021.
Teams with NASA’s Exploration Ground Systems (EGS) and contractor Jacobs integrated the launch abort system (LAS) with the Orion spacecraft inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida on July 23, 2021. Photo credit: NASA/Kim Shiflett

Ahead of the Artemis I lunar-bound mission, teams at NASA’s Kennedy Space Center joined the launch abort tower to the Orion spacecraft on July 23. Working inside the spaceport’s Launch Abort System Facility, engineers and technicians with Exploration Ground Systems and primary contractor, Jacobs, lifted the system above the spacecraft and coupled it with the crew module.

The launch abort system is designed to protect astronauts if a problem arises during launch by pulling the spacecraft away from a failing rocket. Although there will be no crew Artemis I, the launch abort system will collect flight data during the ascent to space and then jettison from the spacecraft.

Next, teams will install four ogives – the protective panels that shield the upper portion of the spacecraft during its entry into orbit. Once final checkouts are complete, Orion will be integrated with the Space Launch System rocket.

Artemis I Rocket Grows Closer to Launch

Teams with NASA’s Exploration Ground Systems and contractor Jacobs integrate the interim cryogenic propulsion stage (ICPS) for NASA’s Space Launch System (SLS) rocket with the launch vehicle stage adapter (LVSA) atop the massive SLS core stage in the agency’s Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida on July 5, 2021.
Teams with NASA’s Exploration Ground Systems and contractor Jacobs integrate the interim cryogenic propulsion stage (ICPS) for NASA’s Space Launch System (SLS) rocket with the launch vehicle stage adapter (LVSA) atop the massive SLS core stage in the agency’s Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida on July 5, 2021. Photo credit: NASA/Kim Shiflett
Teams with NASA’s Exploration Ground Systems and contractor Jacobs integrate the interim cryogenic propulsion stage (ICPS) for NASA’s Space Launch System (SLS) rocket with the launch vehicle stage adapter (LVSA) atop the massive SLS core stage in the agency’s Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida on July 5, 2021.
The ICPS is a liquid oxygen and liquid hydrogen-based system that will fire its RL 10 engine to give the Orion spacecraft the big in-space push needed to fly tens of thousands of miles beyond the Moon. Photo credit: NASA/Kim Shiflett

Leerlo en español aquí.

The Artemis I mission reached another milestone this week inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. On July 5, teams with Exploration Ground Systems and contractor Jacobs stacked the interim cryogenic propulsion stage (ICPS) atop the Space Launch System (SLS) rocket.

The ICPS’s RL 10 engine is housed inside the launch vehicle stage adapter, which will protect the engine during launch. The adapter connects the rocket’s core stage with the ICPS, which was built by Boeing and United Launch Alliance.

The ICPS will fire its RL 10 engine to send the  Orion spacecraft toward the Moon. Its European-built service module will provide the power to take the spacecraft on a journey tens of thousands of miles beyond the Moon.

Before attaching the Orion spacecraft to the rocket, teams will conduct a series of tests to assure all the rocket components are properly communicating with each other, the ground systems equipment, and the Launch Control Center.

The ICPS moved to the VAB on June 19, after technicians in the center’s Multi-Payload Processing Facility completed servicing the flight hardware inside.

Launching in 2021, Artemis I will be an uncrewed flight test of the Orion spacecraft and SLS rocket as an integrated system ahead of missions with astronauts. Under Artemis, NASA aims to land the first woman and first person of color on the Moon and establish a long-lasting presence on and around the Moon while preparing for human missions to Mars.

View additional photos here.