Tissue Engineering and the International Space Station

This week, comments from guest blogger,medical doctor, engineer, and astronaut, Dr. David Wolf, as he reflects on tissueengineering in space.

The InternationalSpace Station National Laboratory has an edge for doing unique experiments inmedicine and biotechnology that are not possible anywhere else—we can “turnoff” gravity. As we gear up to fully use the station, the emerging field oftissue engineering is one of our high-value targets. This is a particularlypromising area of study where microgravity research has already made advancesin basic science. Indications are that further work will lead to importantapplications in clinical medicine on Earth.

Building onthe groundwork from earlier programs, biotechnology research on the spacestation, and associated ground-based research in emulated microgravity, hascreated a large body of information. This data collection demonstrates thevalue of controlled gravity systems for assembling and growing 3-Dimensional livingtissue from individual cells and substrates. The NASA-developed Space Bioreactorprovides a core in-vitro capability both in space and on Earth.


Dr. Wolf, on SpaceStation Mir, repairing a faulty valve in the Space Bioreactor,
an instrument for precisely controlling the conditions enabling the culture of 3-D
human tissues in microgravity.
(NASA image)

On Earth,these bioreactors are unique in that they are able to emulate, within limits,the far superior fluid mechanical conditions achieved in space. One may thinkof this Space Bioreactor as a 3-D petri plate. The core of the instrumentationis a rotating fluid filled cylinder, the culture vessel, producing conditionsinside resembling the buoyancy found within the womb. And much like in thehuman body, this vessel is surrounded by a life support system performing thefunctions of the heart and lung, achieving the precisely controlled conditionsnecessary for healthy tissue growth. The importance of this culturetechnique is that fluid mechanical conditions obtained in microgravity—and emulatedon Earth—allow the growth of tissues in the laboratory that cannot be grown anyother way. Emulated microgravity on Earth, and to a much greater degree, the actualmicrogravity of spaceflight enable an extremely gentle and quiescent fluiddynamic environment. The cells and substrates are free to organize into 3-Dtissues without the need to introduce disruptive suspension forces from bladesor stirring mechanisms. This leads to a broad array of applications based onenhanced in-vitro tissue culture techniques.

Theground-based versions of the Space Bioreactor produced very high fidelity colontumors for cancer research, providing strong indications of the value of actualmicrogravity, see Figure 1. Even so, when I first put space grown tissuesamples under the microscope, while aboard the Space Station Mir, I wasastounded! In my many years of experience culturing tissues, I had never seenany so well organized, so healthy, and with such fine structure. Nerve derivedtissue from the adrenal gland was forming long fronds of exceptionally delicatetissue, see Figure 2. What I was seeing could never form on Earth, even in ourstate-of-the-art systems that emulate microgravity.


Figure 1, Anartificially produced colon cancer tumor produced
under emulated microgravity on Earth is composed of millions of
cancerous cells forming a 3-D configuration, much like that
which would form in the human body. Work conducted at NASA
in collaboration with Dr. Kim Jessup.
(Image courtesy of Dr. David Wolf)



Figure 2, Neural-derivedadrenal tissue from a pheochromocytoma –
grown in actual microgravity. Photomicrograph taken by Dr. David Wolf
in work conducted on Mir in collaboration with Dr. Peter Lelkes.
(Image courtesy of Dr. David Wolf)

NASA researchin the Space Bioreactors produced over 25 U.S. patents and the technology isconsidered state-of-the-art for ground-based tissue culture. Scientists aroundthe globe from the National Institutes of Health or NIH, medical centers, and universitieshave produced numerous peer reviewed publications in highly respected journalsand even more patents based on the fundamental principles. Other actualspaceflight research has been successfully used to study breast cancer and prostatecancer. NASA has licensed its patents to spin-off companies including Synthecon, Inc., for commercialmanufacturing of the equipment, and Regenetech,Inc., for regenerative medicine and stem cell applications. These companieshave in turn sublicensed the technology even more broadly, enabling widespreaduse of this NASA-developed technology.

Researchers onEarth use this technology to study cancer, stem cells, diabetes, cartilagegrowth, nerve growth, skin, kidney, liver, heart, blood vessels, infectiousdisease—virtually every tissue in the body. The applications go much furtherthan engineering implantable tissue, to include vaccine production and living ex-vivoorganic life support systems, such as artificial livers. Researchers at the NIH,for instance, used the methods to propagate the HIV virus, responsible forAIDS, in artificial lymph node tissue—itself sustained in the bioreactor. This resultedin the ability to study the virus life cycle under controlled conditions,outside the human body.

But we arenot done. While very capable on Earth, the performance of Earth-boundbioreactors is still limited by the presence of gravity. Spaceflight testing onMir and the space shuttle demonstrate that the growth of larger, better functioning,and more organized tissue may be obtained under true low gravity conditions. Todate, the Space Bioreactor has been exploited primarily for basic research. Duringthe intervening time, the field of medicine has evolved a firm vision towardstrue regenerative tissue technology. In recent years, powerful molecular biologytechniques provided a detailed biological knowledge, which permits understandingcellular machinery almost like micro-machines. This convergence of technologywith the space station laboratory opens a new chapter for space biotechnology.

The InternationalSpace Station National Laboratory now provides an unprecedented opportunity tothe biotechnology community. Within NASA, scientists continue to work to build theinfrastructure to enable the biotechnology community; to help them take thenext steps in exploiting controlled gravity in-vitro systems. The vision is toteam together the very best minds and institutions, leveraging their abilitiesto advance regenerative medicine. Such advances can lead to improving ourquality of life on Earth and serve as a lasting legacy of the space station era.

Dr. David Wolf is anastronaut, medical doctor, and electrical engineer. Having traveled to spacefour times, Dr. Wolf participated in three short-duration space shuttlemissions and a long-duration mission to the Russian Space Station Mir. A nativeof Indianapolis, he participated in seven spacewalks, and the SLS-2 Life SciencesSpacelab Mission, logging over 4,040 hours in space. He received the NASAExceptional Engineering Achievement Medal, the NASA Inventor of the Year Award,among multiple recognitions for his work in advancing 3-D tissue engineeringtechnology.

11 for 2011: Julie Robinson on Spaceflight

[From the SciGuy Blog, The Houston Chronicle, originally posted on December 31, 2010.]

11 for ’11: Julie Robinson on spaceflight

During the holiday season I’ve invited 11 of the greater Houston area’s top scientific minds to share a few words on something — a trend, a discovery or an insight — in their field that excites them as they look ahead to the next few years. A new entry in the 11 for ’11 series will be published each morning.

Today’s insight comes from Julie Robinson, chief scientist for the International Space Station.

The International Space Station — the most capable laboratory ever in space — becomes fully available to scientists in 2011. Managed as a National Laboratory, the entire nation will have access for research.

Often critics of the space station, the editors of the journal Nature recently recognized the importance of the laboratory, writing: “In a time of austerity, [researchers] have been handed the ultimate luxury: a new frontier for research that is limited only by their imagination.”

Early use of the space station for research shows compelling possibilities for what scientists will learn. Cellular and microbial biology is poised to make substantial advances. Already, new mechanisms of Salmonella bacteria virulence have been discovered. There are strong indicators that studies of cell differentiation and tissue formation in space could be transforming.

Seeing the station’s potential, the National Institutes of Health have already selected experiments to make use of the laboratory for research that cannot be done on Earth. These studies look at broad areas of human health, including bone remodeling, immune function, and barrier functions of intestinal lining.

Risking scientific whiplash to shift focus to fundamental physics, 2011 will also see the launch of the Alpha Magnetic Spectrometer. This state-of-the-art instrument, developed by hundreds of scientists around the globe, will study the formation of the universe and seek to understand dark matter itself.

From the cosmos to genes in bacteria, the space station is the laboratory to watch for discoveries that could never occur at an Earth-bound lab as the era of space station utilization begins.

To see the rest of the 11 for ’11 essays, click here.

When will we know if research on the ISS has paid off?

I often have the opportunity to do interviews with reporters who are interested in the kind of research happening on the International Space Station. Sometimes they are veteran space reporters, other times they are new and just learning about space research for the first time.

 

Regardless of their past experience, they often ask me for evidence that research on the space station is worth the cost. It is a simple question, but a misleading one. This is because it counts every penny on the cost side, but fails to account for the multiple benefits in addition to research results: international cooperation, engineering accomplishments, and research accomplishments.

 

The space station already benefits the country and the world through its construction and operation—even if it were never used as a laboratory, this would still hold true. We should not lose track of the power of daily international cooperation in constructing, operating and using the space station. The fact that this cooperation is on the cutting edge of space technology and for peaceful purposes amazes the previous generation, but is business as usual for us today. I work closely with colleagues at the main partner agencies, including Russia, the European Space Agency, Japan, and Canada; over 59 countries have participated in space station research or education activities through 2010.

 

Crewmembers from ISS Expedition 20 represent five nations and the five partners in building the International
Space Station: Belgium (European Space Agency), Canada, Japan, Russia, and the United States.
                                                                                                   
Image courtesy of NASA: ISS020e008898

 

The value of the space station as an engineering accomplishment should also not be underestimated. Common standards allow parts manufactured all over the world to interchange and connect flawlessly the first time they meet in orbit. Year round operations, 24 hours a day, 7 days a week, have now extended for 11 years, and we have more than a decade ahead of us. The various life support technologies developed for station provide redundant capabilities to ensure the safety of the crew. They also provide technology advances that benefit people right here on Earth—for example, new compact technologies provided water purification after earthquakes in Pakistan and Haiti.

 

Water filtration plant set up in Balakot, Pakistan, following the earthquake
disaster in 2005. The unit is based on space station technology and processes
water using gravity fed from a mountain stream.

                                       Image courtesy of the Water SecurityTM Corporation

 

Even if we could place a monetary value on peaceful international cooperation and engineering advances from building and operating spacecraft, finding the true long-term payoffs of scientific research is very challenging. Some items could be tabulated as direct benefits from space station research—things such as new materials and products that can have a measurable market impact. Beyond the obvious items, however, the calculations get fuzzy. New products can lead to long-term economic value by making safer vehicles, by extending human life, and even by advancing the quality of life. What might appear as esoteric knowledge may indeed be the first critical steps on the path to a high-value breakthrough. Let us not forget indirect benefits from educational activities, job creation, and economic growth, as well. Colin Macilwain wrote a great critical review of the general challenges of valuing the worth of science in Nature last June, Science Economics: What Science is Really Worth, which I recommend for those interested in the challenge of valuing science.

 

In the coming weeks I will share with you stories of some of the direct benefits that I see coming from space station research. These developed from the modest research throughput during the station assembly period, prior to the full use of the finished laboratory we have today. Based on publications so far, most space station experiments take 2-5 years post-laboratory to publish results. New products related to these results take another 5-10 years or more to transition to a direct benefit. In fact, the space station will be deorbited before an accounting can be completed.

 

Along this journey, there are some really exciting possibilities emerging. I invite you to browse developments from space station research via our key results Web site, as we monitor the progress from knowledge to direct benefits.

 

Julie A. Robinson, Ph.D.

ISS Program Scientist