Five “Secrets” of Engine 2059

Earlier this month, another successful test firing of a Space Launch System (SLS) RS-25 engine was conducted at Stennis Space Center in Mississippi. Engine testing is a vital part of making sure SLS is ready for its first flight. How do the engines handle the higher thrust level they’ll need to produce for an SLS launch? Is the new engine controller computer ready for the task of a dynamic SLS launch? What happens when if you increase the pressure of the propellant flowing into the engine? SLS will produce more thrust at launch than any rocket NASA’s ever flown, and the power and stresses involved put a lot of demands on the engines. Testing gives us confidence that the upgrades we’re making to the engines have prepared them to meet those demands.

If you read about the test – and you are following us on Twitter, right? – you probably heard that the engine being used in this test was the first “flight” engine, both in the sense that it is an engine that has flown before, and is an engine that is already scheduled for flight on SLS. You may not have known that within the SLS program, each of the RS-25 engines for our first four flights is a distinct individual, with its own designation and history. Here are five other things you may not have known about the engine NASA and RS-25 prime contractor Aerojet Rocketdyne tested this month, engine 2059.

Engine 2059 during testing at Stennis Space Center on March 10
Engine 2059 roars to life during testing at Stennis Space Center.

1. Engine 2059 Is a “Hubble Hugger” – In 2009, the space shuttle made its final servicing mission to the Hubble Space Telescope, STS-125. Spaceflight fans excited by the mission called themselves “Hubble Huggers,” including STS-125 crew member John Grunsfeld, today the head of NASA’s Science Mission Directorate. Along with two other engines, 2059 powered space shuttle Atlantis into orbit for the successful Hubble servicing mission. In addition to its Hubble flight, engine 2059 also made four visits to the International Space Station, including the STS-130 mission that delivered the cupola from which station crew members can observe Earth below them.

Launch of Atlantis on STS-125
The engine farthest to the left in this picture of the launch of the last Hubble servicing mission? That’s 2059. (Click for a larger version.)

2. The Last Shall Be First, and the Second-to-Last Shall Be Second-To-First – The first flight of SLS will include an engine that flew on STS-135, the final flight of the space shuttle, in 2011. So if the first flight of SLS includes an engine that flew on the last flight of shuttle, it only makes sense that on the second flight of SLS, there will be an engine that flew on the second-to-last flight of shuttle, right? Engine 2059 last flew on STS-134, the penultimate shuttle flight, in May 2011, and will next fly on SLS Exploration Mission-2.

View of the test stand during the test of engine 2059 at Stennis Space Center on March 10.
The test of engine 2059 at Stennis Space Center on March 10.

3. Engine 2059 Is Reaching for New Heights – As an engine that flew on a Hubble servicing mission, engine 2059 has already been higher than the average flight of an RS-25. Hubble orbits Earth at an altitude of about 350 miles, more than 100 miles higher than the average orbit of the International Space Station. But on its next flight, 2059 will fly almost three times higher than that – the EM-2 core stage and engines will reach a peak altitude of almost 1,000 miles!

Infographic about engine testing
Click to see larger version.

4. Sometimes the Engine Tests the Test Stand – The test of engine 2059 gave the SLS program valuable information about the engine, but it also provided unique information about the test stand. Because 2059 is a flown engine, we have data about its past testing performance. Prior to the first SLS RS-25 engine test series last year, the A1 test stand at Stennis had gone through modifications. Comparing the data from 2059’s previous testing with the test this month provides calibration data for the test stand.

NASA Social attendees with engine 2059 in the background
Attendees of a NASA Social visiting Stennis Space Center being photobombed by engine 2059.

5. You – Yes, You – Can Meet Awesome SLS Hardware Like Engine 2059 – In 2014, participants in a NASA Social at Stennis Space Center and Michoud Assembly Facility, outside of New Orleans, got to tour the engine facility at Stennis, and had the opportunity to have their picture made with one of the enginesnone other than 2059. NASA Social participants have seen other SLS hardware, toured the booster fabrication facility at Kennedy Space Center in Florida, and watched an RS-25 engine test at Stennis and a solid rocket booster test at Orbital ATK in Utah. Watch for your next opportunity to be part of a NASA Social here.

Watch the test here:
https://www.youtube.com/watch?v=https://www.youtube.com/watch?v=njb9Z2jX2fA[/embedyt]

If you do not see the video above, please make sure the URL at the top of the page reads http, not https.


Next Time: We’ve Got Chemistry!

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

Time Flies: Next-Generation Rocket Is the Work of Generations

This week’s Rocketology post is by the newest member of the SLS communications team, Beverly Perry.

When NASA’s Space Launch System (SLS) first flies, it will slice through Earth’s atmosphere, unshackling itself from gravity, and soar toward the heavens in an amazing display of shock and awe. To meet the engineering challenges such an incredible endeavor presents, NASA’s Marshall Space Flight Center draws upon a vast and diverse array of engineering talent, expertise and enthusiasm that spans multiple disciplines and, in some cases, a generation. Or two.

Kathryn Crowe is a twenty-something aerospace engineer who tweets from her smartphone and calls herself a “purveyor of the future.” Hugh Brady, on the other hand, began his career at Marshall during the days of punch cards and gargantuan room-sized IBM mainframes with an entire 16 kilobytes (!) of memory.

Kathryn Crowe and Hugh Brady
While they’ve had very different experiences, Kathryn Crowe and Hugh Brady share a common excitement for their work on SLS.

But if you think these two don’t have much common ground on which to build a strong working foundation, well, think again. Although the two aerospace engineers may be separated by a couple generations, they speak of each other with mutual admiration, respect and enthusiasm. And like any relationship built on a solid foundation, there’s room for fun, too.

Even though Brady’s career spans 50-plus years at NASA, he’s anything but jaded, to hear Crowe tell it. “Hugh still seems to keep that original sense of excitement. I figure if he thinks I’m doing okay, then I must be doing okay since he’s seen almost our entire history as an agency. It’s nice to have him to help keep me straight,” says Crowe, who recently received NASA’s Space Flight Awareness Trailblazer Award, which recognizes those in the early stages of their career who demonstrate creative, innovative thinking in support of human spaceflight. “And, he always tries to bring a sense of humor to everything he does.”

“I’ve enjoyed being mentored by Kathryn,” jokes the seventy-something Brady, who admits to failing retirement (twice, so far) because he loves the space program and can’t stay away. (Also, he said, because he doesn’t care for television. But mostly it’s because he loves space exploration and working with young, talented engineers.)

Crowe and Brady have worked together evaluating design options and deciding on solutions to make the second configuration of SLS as flexible and adaptable as possible. This upgraded configuration – known as Block 1B – adds a more-powerful upper stage and will stand taller than the Saturn V. It could fly as early as the second launch of SLS, which will be the first crewed mission to venture into lunar orbit since Apollo. Block 1B also presents the opportunity to fly a co-manifested payload, or additional large payload in addition to the Orion crew capsule.

Illustration showing the Block 1B configuration of the rocket and 8.4 and 10 meter payload fairing options
The addition of an Exploration Upper Stage to SLS will make the rocket more powerful and open up new mission possibilities.

For Crowe, a self-described “shuttle baby,” working on a future configuration of SLS means the chance to look at the big picture. “I like to have a global view on things. For this particular rocket, we’ve made it as flexible as we can. We can complete missions that we don’t even know the requirements for yet!”

For Brady, “Things have a tendency to repeat.” While technology and solutions continue to improve, some of the challenges of spaceflight will always remain the same. When it comes to wrestling with the challenges of a co-manifested payload, Brady draws on his experience, but focuses on solutions that are tailored for SLS. It’s bringing lessons from the past into the present in order to find the best solution for future missions. “It’s drawing on what we’ve learned from the past but not necessarily repeating the past. We want the best solution for this vehicle,” he emphasizes.

Crowe says the experience and knowledge Brady brought to the table made all the difference when studying options for the SLS vehicle. “Hugh would say, ‘I think we worked on this particular technical problem when we were initially flying.’ He could draw parallels so we didn’t reinvent the wheel,” Crowe says. Since then, Brady has become something of a mentor to Crowe and other younger team members.

“When you put that kind of technical information on the table it gives people better information – information that’s based on prior experience,” Brady says. “We may not pick the same solution, because technology changes over time, but we will have more and better information to use when making decisions.”

“I think that having that kind of precedent to build upon it really is a beautiful thing,” Crowe says.

For his part, Brady says he feels a “comfort” level in passing the United States’ launch vehicle capabilities on to the next generation of engineers and other supporting personnel. “One of the things I find very exciting is to look around and see the young talent around the center with their energy and enthusiasm. I feel good thinking about when I do hang it up – again – that they will carry on and even do more than we did,” he says.

When you ask Crowe if humans will get to Mars, she says, “For sure I think within my lifetime I will see humans on Mars. I think more than ever right now is the right time to return to human spaceflight. We have the right skills and expertise. And when we successfully complete our mission and show that sort of hope to people again, that’s going to be equally as important as technological benefits.”

“That’s the objective,” Brady says. “I can’t wait until we fly again. It’s a tremendous feeling! It’s exhilarating! It’s time.”

https://www.youtube.com/watch?v=https://www.youtube.com/watch?v=gXMhOe1pRKc[/embedyt]If you do not see the video above, please make sure the URL at the top of the page reads http, not https.


Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

Making a Lot of Fire in Two “Easy” Steps

On one end of the technology spectrum, you have rocket science, mastering the laws of physics to allow human beings to break the chains of gravity and sail through the void of space.

On the other end, you have the earliest humans, first learning to use the world around them in innovative ways to do things they previously couldn’t.

What do these two extremes have in common? Making fire. Just like the secret to learning to cook food was mastering the creation of flames, creating fire is also the secret to leaving the planet.

We just use a much bigger fire.

Close-up of aft end of SLS during launch
Solid rocket motors and liquid-fuel engines will work together to propel the first SLS into space.

If you’ve watched the first video in our No Small Steps series you’ve learned why going to Mars is a very big challenge, and why meeting that challenge requires a very big rocket. In the second installment we talked about how NASA’s Space Launch System (SLS) builds on the foundation of the Saturn V and the space shuttle, and then uses that foundation to create a rocket that will accomplish things neither of them could.

Now, the third No Small Steps video takes a step further by looking at the basics of the monumental energy that makes the rocket go up. If you’ve been following this Rocketology blog and the No Small Steps videos, you’re aware that the initial configuration of SLS uses two different means of powering itself during launch – solid rocket boosters and liquid-fuel engines.

But why? What’s the difference between the two, and what role does each play during launch? Well, we’re glad you asked, because those are exactly the questions we answer in our latest video.

With more SLS engine and booster tests coming in the next few months, this video is a great way to get “fired up” about our next steps toward launch.

https://www.youtube.com/watch?v=http://youtu.be/zJXQQv9UZNg[/embedyt]
If you do not see the video above, please make sure the URL at the top of the page reads http, not https.


Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

#YearInSpace: Mars, Miles, Months, Mass and Momentum

During his yearlong mission aboard the International Space Station, Scott Kelly traveled over 143 million miles in orbit around Earth.

On average, Mars is 140 million miles away from our planet.

Coincidence? Well, basically.

Scott Kelly with plant-growth experiment
NASA astronaut Scott Kelly took this selfie with the second crop of red romaine lettuce in August 2015. Research into things like replenishable food sources will help prepare the way for Mars. (And the red lettuce even kind of matches the Red Planet!)

There’s nothing average about a trip to Mars; so of course you don’t travel an “average distance” to get there. Launches for robotic missions – the satellites and rovers studying Mars today – are timed around when Earth and Mars are about a third of that distance, which happens every 26 months.

While the shortest distance between two points is a straight line, straight lines are hard to do in interplanetary travel. Instead, Mars missions use momentum from Earth to arc outward from one planet to the other. The Opportunity rover launched when Earth and Mars were the closest they’d been in 60,000 years, and the rover still had to travel 283 million miles to reach the Red Planet.

On the International Space Station, Scott Kelly was traveling at more than 17,000 miles per hour, an ideal speed for orbital research that keeps the station steadily circling Earth every 90 minutes. To break free of orbit and go farther to deep space, spacecraft have to travel at higher speeds. Opportunity, for example, traveled at an average of 60,000 miles per hour on the way to Mars, covering twice the distance Kelly traveled on the station in just over half the time.

Graphic showing Opportunity’s trajectory from Earth to Mars
Although Earth and Mars were relatively close together when Opportunity launched, the rover’s trip out was twice the average distance between the two planets.

The fastest any human being has ever traveled was the crew of Apollo 10, who hit a top speed of almost 25,000 miles per hour returning to Earth in 1969. For astronauts to reach Mars, we need to be able to propel them not only faster than the space station travels, but faster than we’ve ever gone before.

But the real lesson of Kelly’s year in space isn’t the miles, it’s the months. The human body changes in the absence of the effects of gravity. The time Kelly spent in space will reveal a wealth of new data about these changes, ranging from things like how fluid shifts in microgravity affected his vision to the behavioral health impacts of his long duration in the void of space. This information reveals more about what will happen to astronauts traveling to Mars and back, but it also gives us insight into how to equip them for that trip, which will be approximately 30 months in duration round-trip. What sort of equipment will they need to keep them healthy? What accommodations will they require to stay mentally acute? What sort of vehicle do we need to build and equip to send them on their journey?

Months and millions of miles. Momentum and mass. These are some of the most basic challenges of Mars. We will need to build a good ship for our explorers. And we will need the means to lift it from Earth and send it on its way fast enough to reach Mars.

An engine section weld confidence article for the SLS Core Stage is taken off the Vertical Assembly Center at NASA's Michoud Assembly Facility in New Orleans
An engine section weld confidence article for the SLS Core Stage is taken off the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans.

While Scott Kelly has been living in space helping us to learn more about the challenges, we’ve been working on the rocket that will be a foundational part of addressing them. Scott Kelly left Earth last year half a month after the Space Launch System (SLS) Program conducted a first qualification test of one of its solid rocket boosters. Since then, we have conducted tests of the core stage engines. We’ve started welding together fuel tanks for the core stage. We’ve begun assembling the upper stage for the first flight. We’ve been building new test stands, and upgraded a barge to transport rocket hardware. The Orion program has completed the pressure vessel for a spacecraft that will travel around the moon and back. Kennedy Space Center has been upgrading the facilities that will launch SLS and Orion in less than three years.

And that’s just a part of the work that NASA’s done while Kelly was aboard the space station. Our robotic vanguard at Mars discovered evidence of flowing liquid water, and we’ve been testing new technologies to prepare us for the journey.

Down here and up there, it’s been a busy year, and one that has, in so many ways, brought us a year closer to Mars. The #YearInSpace months and millions of miles may be done, but many more Mars milestones are yet to come!


Next Time: Next Small Steps Episode 3

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

Think You’re Stressed? Try Being A Rocket

You know how big the SLS vehicle will be. We described the tremendous power and thrust of just one of the RS-25 engines after last year’s test firings. You may have witnessed live as we fired one of the massive five-segment solid rocket boosters last March. Through all that, perhaps you can imagine how incredible it will be at launch when all four engines and both boosters ignite together to lift this 322 feet tall, 5.75 million pound rocket up through the atmosphere and toward deep space. Imagine the thunderous vibration in your chest even as you stand several miles away.

Artist’s concept of an SLS launch
Note: Actually watching an SLS launch from this close is strongly not advised (or permitted). Orion hardware is being tested to withstand sound levels that would turn a person to liquid.

We’ve talked about how it will feel to be there when the rocket launches. Now, let’s talk about how it would feel to BE the rocket, launching.

Envision the power generated at launch as the engines and boosters throttle up to 8.8 million pounds of thrust. The heat is incredible! The vehicle starts to shake. The engine nozzles, as big and solid as they seem, will warp under the pressure of heat when the engines ignite seconds ahead of the boosters. While still on the pad, the boosters are bearing the weight of the entire vehicle even as they fire up for launch – the weight of almost 13 Statues of Liberty resting on an area smaller than an average living room.

Then, you – the rocket – are released to fly, and up you go. More than 5 million pounds of the weight of the rocket pushing down are now counteracted by more than 8 million pounds of thrust pushing from the opposite direction. Remember those 13 Statues of Liberty? Now the bottom of the rocket is feeling the pressure of 29 of them instead!

And now things are heating up on the front end of the rocket as well. Approaching Mach 1, shock waves move over the entire vehicle. Friction from just moving through the air causes the nose of the vehicle to heat. The shock waves coming off the booster nose cones strike the core stage intertank and can raise the temperature to 700 degrees. The foam insulation not only keeps the cryogenic tanks cold, it keeps the heat of ascent from getting into the intertank structure between the hydrogen and oxygen tanks.

Computer model of a shock wave at the front of the SLS vehicle at the time of booster separation during launch.
Computer model of a shock wave at the front of the SLS vehicle at the time of booster separation during launch.

Are you feeling it yet? That’s a lot to handle. These impacts from weight (mass), pressure, temperature and vibration are called “loads.” It’s a key part of the “rocket science” involved in the development of the SLS vehicle.

A load is a pressure acting on an area. Sounds simple, right? There are all kinds of loads acting on SLS, some even before it leaves the launch pad. Tension and compression (pulling and pushing), torque (twisting), thermal (hot and cold), acoustic (vibration), to name a few. There are static (stationary) loads acting on the big pieces of the rocket due to gravity and their own weight. There are loads that have to be considered when hardware is tipped, tilted, rolled, and lifted at the factory. There are “sea loads” that act on the hardware when they ride on the barge up and down the rivers to various test sites and eventually across the Gulf of Mexico and up the Florida coast to Kennedy Space Center for launch. Engineers have to consider every single load, understanding how they will affect the structural integrity of the rocket and how they will couple and act together.

The Pegasus barge that will transport SLS
You’ve probably never thought of “riding on a boat” as rocket science, but SLS has to be designed to handle sea loads as well as space loads.

When SLS is stacked on the mobile launcher at KSC, there are loads acting through the four struts securing the core stage to the boosters and down into the booster aft skirts that have to carry the entire weight of the launch vehicle on the mobile launcher. Then there are roll-out loads when the mobile launcher and crawler take SLS more than 4 miles from the Vehicle Assembly Building to the launch pad. There are many more loads as the vehicle is readied for launch.

How do engineers know the rocket’s ready to handle the loads it has to face to send astronauts into deep space? Step One is good design – developing a rocket robust enough to withstand the strains of launch. However this is difficult as the vehicle needs to be as lightweight as possible. Step Two is digital modeling – before you start building, you run many, many simulations in the computer to a level of detail that would make any Kerbal Space Program fan jealous. Step Three is to do the real thing, but smaller – wind-tunnel models and even scale-model rockets with working propulsion systems provide real-life data. And then comes Step Four – build real hardware, and stress it out. Test articles for the core stage and upper stage elements of the vehicle will be placed in test stands beginning this year and subjected to loads that will mimic the launch experience. Engines and boosters are test-fired to make sure they’re ready to go.

Still want to be the rocket? Stay tuned for more on loads as we do everything possible to shake, rattle, and yes, even roll, the pieces of the rocket, ensuring it’s ready to launch in 2018.


Next Time: No Small Steps Episode 3

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

The Path to the Pad

2016 is well underway. Another year over, another year begun.

For the SLS program, it means we’re even further past the halfway point toward launch readiness. It’s been only four years since the program officially began in September 2011, and we’re working toward being ready in less than three years for our first launch.

Artist’s concept of SLS stacking at Kennedy Space Center
The day this is a photograph instead of an artist’s concept will be a good day.

The bulk of the first four years was focused on completing the design. To be sure, there was smoke and fire and bending metal as we tested boosters and engines and began building the barrels for the core stage of the rocket. Building on the foundation of the Space Shuttle Program allowed us to move quickly into testing of the engines and boosters, and the design work on the core stage progressed rapidly enough to allow us to begin early manufacturing, and all of that was preparation for what would come when we completed the critical design review of the plans.

An RS-25 engine being raised into the test stand
RS-25 Engine 2059 is currently in the stand for testing at Stennis Space Center. A few years ago, it powered Atlantis’ longest mission, and a few years from now, it will loft SLS’ first crew into space.

With the design work all but done, the push toward the pad is well underway, and there’s a lot of work that entails.

For the rocket to roll out to the pad for launch, each element of the vehicle has to arrive at the Vehicle Assembly Building at Kennedy Space Center to be stacked together with the Orion crew vehicle. And each part has its own road to get there.

For the upper stage portion of the vehicle, which will push Orion out of Earth orbit and into deep space, to be ready to fly, test articles will be built of the adapters that connect the upper stage to the rest of the rocket and to Orion, along with a test article of the upper stage itself. These three test articles will be placed in a stand together, and subjected to stresses and strains to make sure they’re ready for launch. Based on the results of that test, the actual flight articles of the upper stage and adapters will be completed and transported from Marshall Space Flight Center in Huntsville, Ala., to Kennedy Space Center.

For the solid rocket boosters to be ready to fly, qualification motor tests will take place at Orbital ATK in Utah. The results of those tests will pave the way for processing, fueling and completion of the flight boosters, using hardware already at Kennedy Space Center. The boosters will be the first piece of SLS to be stacked in the VAB at Kennedy.

For the 200-foot-tall core stage, which its large fuel tanks and RS-25 engines to be ready to fly, the engines and the stage itself must each undergo individual preparation, and then be integrated together. Tests will be conducted at Stennis Space Center in Mississippi of individual engines, to make sure the RS-25 is ready for the environment it will encounter during launch. Test articles will be built of the large pieces that make up the core stage, and will be transported from Michoud Assembly Facility outside New Orleans to Marshall, where they’ll be placed in large test stands – which have to be built for this purpose – to undergo structural testing. Using the results of those tests, the actual first flight core stage will be completed. Engines will be transported from Stennis to Michoud to be integrated into the core stage, which will then be transported back to Stennis for the largest rocket test firing since the Apollo era. Once it has been tested, the stage will then be shipped down to Kennedy for stacking.

And that’s just the big pieces. In the meantime, work must be done on things like making sure the software that controls the rocket is ready to go.

A new SLS test stand being built at Marshall Space Flight Center
At Marshall Space Flight Center, work is taking place now on the stands that will be used for the test versions of core stage components.

We’ve already made a good start on this “building” phase of the program. In March of last year, we conducted the first qualification test of the solid rocket boosters, and we’re currently preparing for the next, which will take place later this year. At the same time, we’ve started working on the flight hardware for the boosters for SLS’s first launch.

We’ve completed the first series of individual engine tests, using an unflown development engine, and are about to start the second early this year, using an engine that has flown on shuttle missions and will fly again on the second flight of SLS.

We’re almost finished with the upper-stage element test articles, and will use them to conduct structural tests over the course of this year. At the same time, work has already begun on the actual upper stage that will be used to push Orion beyond the moon on SLS’s first flight.

We’re well underway building the pieces that will be used to finish the core stage test articles and the stands on which they’ll be tested. Very soon, we’ll be welding together test articles of the rocket’s liquid hydrogen and liquid oxygen tanks, as well as other core stage components. Those, in turn, will be followed by the flight articles for the first core stage.

It’s an exciting time, and making it more exciting is the fact that this work is taking place in the modern era of digital media, giving you an unprecedented look at the process. As we continue to grow closer, one step at a time, to launch, you’ll be able to follow us every step of the way.


Next Time: May The Forces Be With You

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

A Model Employee

This week, I’d like to introduce guest blogger Jared Austin, a fellow writer on the SLS Strategic Communications team, for a peek into a part of the SLS team that is rarely seen, but creates some of our most-seen tools. — David

Parts of SLS models during assembly
Ever wonder what the sides of the new SLS booster design look like? Now you know!

Few people know Barry Howell and what he’s done for the space program for decades. Neither astronaut nor engineer, through his work as a master model maker Barry has helped NASA visualize spacecraft before they existed.

For more than 40 years, Barry’s “office” has been a space model workshop filled with the past, present and futures of NASA. Barry has created models of many of NASA’s greatest endeavors – from the mighty Saturn 1B and Saturn V, to the iconic Space Shuttle, to early concepts of the International Space Station, to the Hubble Space Telescope, and many other vehicles. Those models aren’t the mass produced, off-the-shelf toys that little Timmy or Sarah receives for their eighth birthdays. Barry’s models are works of both artistic and technical mastery that are painstakingly crafted to scale in a variety of sizes from models that will fit on your desk to a giant that is over 12 feet tall.

Barry Howell with a freshly updated 1-to-50 scale model of SLS
Barry Howell with a freshly updated 1-to-50 scale model of SLS.

You don’t last forty years at a job unless you’re extremely passionate about what you do. Barry’s craft is a rare calling – there are only a small handful of modellers at Marshall Space Flight Center, and only a few NASA centers have model shops. Model makers who get a job like this tend to keep it for a long time, so turnover is low and opportunities are infrequent. Barry came to the job from a background in machining, which he started working while in high school. But when there is an opening in the model shop, there really is only one job qualification – be the best at what you do. There’s no particular education or experience requirement, unmatched skill is the determining factor.

Over the course of his career, Barry’s work has helped solve the agency’s most challenging problems, letting engineers visualize the hardware they are designing and building, and to prove concepts such as the shade on Skylab. After Skylab’s launch, NASA had only 10 days to design and build a sunshade for the space station. Barry helped build a model to demonstrate that the umbrella-like shade that Marshall engineers were designing would properly shield Skylab from the sun’s heat. And his work is rather unique within NASA.

Now Barry is taking his decades of experience in modeling all types of NASA systems and using it to produce models of America’s next great rocket, the Space Launch System.

A row of Saturn-era models in the model shop archive
In decades past, Barry created his models directly from vehicle engineering blueprints.

During his tenure in the model shop, Barry has seen changes in technology and process, along with classic methods that have stood the test of time. In the old days of Saturn and early Shuttle, each and every model would be carefully machined according to actual blueprints that allowed Barry to ensure they were precise representations of the real rockets. Working with aluminum or plexiglass blocks, Barry would carefully drill into blocks with a mill or strip away pieces with a lathe, using nothing more than his focused eye, steady hands, and well-honed judgment to carve the individual parts of the rocket from those blocks.

Today, for SLS, model production is a combination of old and new techniques. There’s no longer a need to individually handcraft each model that’s produced; resin casting allows for mass production of models, allowing the model shop to churn out the models at a faster rate and lower cost. But in order to produce the mold for that casting, the old ways are still best. To this day, Barry produces his initial master for each model line with the meticulous same mill and lathe machining process that he used during Saturn.

Close-up of parts for SLS models
In order to capture the fine detail of an official Marshall model, Barry machines the prototype for each model series the shop produces.

Recently, though, even more modern techniques have entered the model shop in the form of 3D printing, creating small astronaut figures, handheld models of the rocket, or small versions of the SLS engines. It’s a new area that the modelers have just begun to explore and holds many possibilities for improving the way they make SLS models going forward.

“I truly love every part of the model-making process, as well as the variety of different models that I’ve gotten the chance to make at NASA,” Barry said. “And the young guys I get to work with, they come up with a lot of great ideas on how to make things even better.

Barry has also been very gracious in passing on his knowledge to others. Modelers who create their own models at home will often request Barry’s inputs to help them make custom-made parts that look more realistic.

Now, as Barry rides off into the sunset of retirement in a couple of months, he’ll be leaving behind a legacy of models showing NASA’s greatest technological achievements. Barry has helped tell the exploration story and by capturing NASA history in 3D for decades.

Close-up of parts for SLS models
In addition to providing a way to share the vehicles NASA is building, Barry’s models have allowed engineers to visualize concepts that have been proposed.

Next Time: A Model Worker

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

Next Giant Leap, No Small Steps

Our focus today at the Space Launch System (SLS) program is on building a new rocket – the most powerful in the world. On its first test flight, Exploration Mission-1, SLS will carry atop it an uncrewed Orion spacecraft, which will someday carry astronauts on a journey to deep space.

A similar scene was unfolding at NASA 48 years ago. On Nov. 9, 1967, the Saturn V rocket launched for the first time, carrying an Apollo spacecraft.

Less than two years later, a Saturn V rocket and Apollo spacecraft sent three astronauts sailing through the void between two worlds, culminating in two members of the crew becoming the first to set foot on another celestial body. The words spoken as the first boot dug into the powdery gray lunar regolith took their place among the most famous ever said.

“That’s one small step for [a] man; one giant leap for mankind.”*

Launch of Apollo 4
The launch of Apollo 4 was the first from NASA’s Kennedy Space Center in Florida.

With SLS, Orion, and a revitalized space launch complex, we are developing capabilities for our next pioneering endeavor – a journey to Mars.

We continue to make progress toward that journey. Testing has begun on the boosters and engines for the Space Launch System rocket. The One-Year Crew is currently aboard the International Space Station, learning more about living in space for long durations. Our robotic explorers on Mars discovered flowing water and the history of the Martian atmosphere. The Orion vehicle made its first spaceflight, traveling 15 times higher than the orbit of the space station before successfully returning to Earth. These accomplishments, and many more over the last year, bring us closer to the “next giant leap” to Mars, but are all important in their own right. The journey to Mars is hard and the “small steps” along the way aren’t really that small.

And that’s the general idea behind a set of new videos we’re launching today – “No Small Steps.” The challenge of going to Mars is monumental, and it’s going to take a monumental rocket to make it possible. In an entertaining and informative format, “No Small Steps” gets into the “how” of making that happen – taking rocket science and making it relatable to answer questions like how you power a rocket designed for Mars, how you build a rocket the same size as the Saturn V but make it more powerful, how SLS combines the best of NASA’s greatest launch vehicles and makes it even better. We’ll release the next two installments about a month apart, so stay tuned.

Because when it comes to our journey to Mars and beyond, there are no small steps.

https://www.youtube.com/watch?v=https://www.youtube.com/watch?v=TOYXa9jx-TI[/embedyt]


Next Time: A Model Employee

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

*My take on the “for man”/”for a man” discussion: Neil was pretty awesome either way.

The Journey to Mars!

A graphic showing an astronaut above the Mars horizon with a rover on the surface
NASA’s Journey to Mars is not simply a human exploration mission; it will bring together much of the best of what NASA does.

How do you get to Mars? You build a rocket, and go.

OK, it’s actually a bit more complex than that. A lot more complex, really. But that’s still a vitally important step. We’ll come back to why in a minute.

First, let’s talk about that “complex” part.

Mars is hard. Really hard.

To start with, Mars is far, far away. At its closest, it can come within 34 million miles of Earth, but that’s a once-in-millennia approach. Usually, if the distance gets within the low 50s, that’s really close. At farthest, Mars is about 250 million miles away. Distance means it takes time to get there.

As you travel that distance, there’s a giant ball of gas in the center of the solar system that really wants to kill you. Once you leave Earth, you’re being constantly bombarded with radiation from our own sun and distant stars.

Then there’s the fact that, if you wanted to design a planet that would be hard for humans to land on, Mars would be a good start. The atmosphere is thick enough to combine with the gravity to make an Apollo-style powered descent difficult, but it’s too thin to make a Shuttle-style glide or Orion-like parachutes easy.

Once you make it past the distance, through the radiation, and to the surface, Mars is still inhospitable. Back in 1972, following a detailed survey of planetary conditions, noted Mars expert Elton John summarized that it ain’t the kind of place to raise your kids, and for the moment that’s not a bad assessment.

All of these challenges are substantial. All of these challenges can be overcome.

A graphic explaining NASA’s three-phase Journey to Mars through Earth Reliant, Proving Ground and Earth Independent phases
Not only is NASA’s Journey to Mars the most ambitious mission the agency has undertaken, it will consist of a series of stepping stones that will also be some of the most ambitious missions we’ve ever flown.

NASA’s Journey to Mars is a holistic approach to solving those challenges, to landing humans on Mars, and to answering key scientific questions about Mars, its environment, its history and its habitability.

This Journey is not something NASA is planning to do; it’s something we are doing, right now, in numerous ways, combining the best of our experiences and abilities in a variety of fields.

  • Robotic explorers are today orbiting the planet and driving across its surface, teaching us more about the conditions there in order to answer those scientific questions and help us prepare for human exploration.
  • Astronauts aboard the International Space Station are conducting research regarding living in space for the long durations a Mars mission will require, learning more about how to maintain both equipment and the human body during the journey.
  • Scientists and engineers are working to mature the advanced technologies that will be needed to solve the complex challenges like radiation protection and entry through the Martian atmosphere.
  • We are also building the robust systems that we need to carry out the trip. The Exploration Flight Test-1 of the Orion crew vehicle in December 2014 was a major milestone, and the first flight of Space Launch System will be another. Later will come in-space propulsion systems, deep-space habitats, and more.
A photo of a rover wheel track on Mars that resembles a human footprint
An important thing to keep in mind when talking about Mars exploration is that we’re already there. This “footprint” photo was captured by the Spirit rover of a track left by one of its wheels, and is a good reminder that our robot explorers are already taking “first steps” on the Journey to Mars.

We’re still in the early phases of the Journey, when our human spaceflight is still “Earth-Dependent,” relying on the supply line and other benefits that come from proximity to our home planet.

Soon, we will begin a series of increasingly ambitious “Proving Ground” missions, traveling farther into space and testing new systems and capabilities.

Finally, when we’ve demonstrated we can be “Earth-Independent,” we’ll be Mars-ready. It will be time to take the next giant leap – possibly first into Mars orbit or the Martian moons, and ultimately to take our first steps on the surface of another planet.

Which brings us back to how you get to Mars – You build a rocket, and go.

All of those challenges will ultimately be solved with hardware – habitats to live in on the long journey, shielding to protect from radiation, supersonic decelerators to descend through the Martian atmosphere, advanced life support for living on the surface, and much more. There will be a lot of that hardware, and some of it will be truly massive. And none of it does any good sitting on the surface of the Earth. If you want to get to Mars, you have to be able to put all of that into space. And that’s where Space Launch System comes in. You have to build a rocket. A big one.

An artist’s depiction of an astronaut and rover on Mars’ moon Phobos
A mission to one of Mars’ moons could potentially provide an opportunity for meaningful scientific work while the final Mars entry, descent and landing systems are still being completed.

And none of it matters unless you do it. Wernher von Braun went on Walt Disney’s Tomorrowland television program in the 1950s to talk about going to Mars, and much time has been spent talking about going to Mars in the decades since, by NASA, other countries, technical societies, industry, and others. You have to talk about Mars, you have to plan, before you can go, but talking and planning alone won’t get you there. You have to do something.

Today NASA is doing something in a way that neither we nor anyone have before. NASA’s Journey to Mars is unique in that it is the first and so far only time that any organization has actually begun building systems designed for human exploration of Mars. We have a long way to go, but we’re taking the first steps.

How do you get to Mars?

You build a rocket.

And go.

Next Time: Four Lessons In Four Years

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!


David Hitt works in the strategic communications office of NASA’s Space Launch System Program. He began working in NASA Education at Marshall Space Flight Center in 2002, and is the author of two books on spaceflight history.

Fourth and Very Very Very Long

A graphic showing that SLS would stretch almost from one end of a football field to the other
Comparing space to football is a grand tradition that may well have been started by John F. Kennedy himself, who compared going to the moon with Rice playing Texas in his ‘We Choose to Go to the Moon’ speech. If it’s good enough for JFK, it’s good enough for me.

Ah, September. That wonderful time of year when the air becomes cooler, leaves begin to turn color, and every discussion is required by law to include football metaphors. You certainly won’t see me intentionally grounding such a great opportunity, so let’s talk about what it means to “go long” in human spaceflight.

The first launch of SLS will send the Orion spacecraft into a large lunar orbit beyond the moon. But, really, how does that compare to previous human spaceflight missions? Let’s use a comparison to a football field to find out.

In real life, a football field, from the back end of one end zone to the other, is just slightly longer than the 322-feet-tall SLS. But for the sake of this metaphor, we’re going to scale the distance Orion will reach at its farthest point on Exploration Mission-1 to the length of that field. Imagine you’re standing at the very end of the end zone of an American football field. In the distance, at the far end of the other end zone, 120 yards away, is the farthest point Orion will reach on EM-1. Are you imagining it? Good.

First play, we’re tossing from the back edge of our end zone to the International Space Station. Complete! We’re well on our way! Well, sort of. This doesn’t quite get you out of your own end zone. In fact, at about 230 miles — roughly the driving distance between New York and Washington, DC — you’ve only gained about three and a half inches on our field.

A graphic showing the International Space Station near the end of a football field
The vast majority of time Americans have spent in space has been around the altitude of the International Space Station, but it’s just the beginning of this journey.

For second down, we’re going to be a bit more aggressive. Back in 1966, almost 50 years ago, two astronauts, Pete Conrad and Dick Gordon, set an Earth orbit altitude record of 854 miles on the Gemini 11 mission – the farthest humans have been without heading to the moon. But even when Gordon takes the ball, you’ve only covered a total of one foot.

Third down, aiming farther still. The altitude record reached on Gemini 11 is less than a third of the altitude Orion reached on its first spaceflight, Exploration Flight Test-1, in December 2014. Using that altitude, 3,600 miles, for our next play, we’ll be just over one percent of the way to our goal, at a total of four feet and eight inches from where we started.

It’s now fourth down, and we’re still at the back of our own end zone. For an even longer distance, we’ll use the distance the International Space Station travels during one orbit of the Earth – 26,250 miles. This play gives us our first down, and also put us out of the end zone by almost four feet.

A graphic showing a map of the Earth outside the end zone of a football field
Technically, orbital mechanics means that the physics of two Robonauts both in the same orbit around the Earth throwing a football any substantial distance between them wouldn’t actually be possible. (Besides, wouldn’t it have been easier to throw it the other direction?)

Sticking with Earth orbit distances is getting us nowhere. We’ve got to be even more aggressive. A long Hail Mary throw sends the ball to the far end of the field, where it’s caught … by Neil Armstrong on the moon! The crowd goes wild! TOUCHD… Wait… What? That’s still only at the other eight-yard line? Oh, well. Let’s keep going.

A graphic showing an Apollo astronaut catching a football near the opposite end zone of a football field
For the record, that picture’s not really Neil Armstrong. Also, the football wasn’t really in this picture.

You look toward the end zone, and there’s astronaut Jim Lovell of Apollo 13! He’s open, and you make the pass. On their emergency free-return trajectory around the moon on Apollo 13, Lovell, Fred Haise and Jack Swigert traveled farther from Earth than anyone has ever been, almost 249,000 miles out. But although Lovell went around the moon on two different Apollo missions, he was never able to touch down, and, unfortunately, he doesn’t now, either. Even the human distance record from Earth is short of the end zone, by three and a half yards.

Back in formation, the quarterback steps back, fires to Orion, caught in the very back of the end zone for a 23 and a half yard gain from where Lovell had it! TOUCHDOWN! On EM-1, Orion will travel about 10 percent farther into space than Apollo ever did. Not bad for a first test flight.

A graphic showing Orion at the opposite end zone of a football field
TOUCHDOWN ORION!

And, from there it gets interesting. Since this was just the first possession, you’d better not let that arm get tired – on our field, the trip to Mars will be about a 77,000 yard pass. Now, THAT is going long.

Next Time: The Journey to Mars

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!