Engineers and technicians inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida stacked the first segment of the Artemis II SLS (Space Launch System) rocket boosters onto mobile launcher 1.
Comprising 10 segments total – five segments for each booster – the SLS solid rocket boosters arrived via train to NASA Kennedy in September 2023 from Northrop Grumman’s manufacturing facility in Utah. The booster segments underwent processing in the spaceport’s Rotation, Processing and Surge Facility before being transferred to the NASA’s iconic VAB for stacking operations.
Technicians inside the 525-foot-tall facility used an overhead crane to lift the left aft assembly onto the mobile launcher. Up next, workers will install the right aft assembly, placing it carefully onto the 380-foot-tall structure used to process, assemble, and launch the SLS rocket and Orion spacecraft.
The first components of the Artemis II Moon rocket to be stacked, the solid rocket boosters will help support the remaining rocket segments and the Orion spacecraft during final assembly. At launch, the 177-foot-tall twin solid rocket boosters provide more than 75 percent of the total SLS thrust during liftoff from NASA Kennedy’s Launch Pad 39B.
Since the mobile launcher returned in October from Launch Pad 39B to the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, work has been underway for upcoming stacking operations of NASA’s SLS (Space Launch System) Moon rocket.
To prepare for launch, the mobile launcher is undergoing optical scans, system checkouts, and umbilical refurbishment, including installation of the aft skirt electrical umbilicals.
The booster segments soon will move from the Rotation, Processing and Surge Facility to the VAB via a transporter. The aft assemblies, or bottom portions of the five segment boosters, will be situated in the facility’s transfer aisle then lifted atop the mobile launcher in High Bay 3.
The examinations and preparations of the mobile launcher and rocket elements lay the groundwork for Artemis II crewed test flight around the Moon.
After spending several months undergoing integrated testing and upgrades at Launch Complex 39B at NASA’s Kennedy Space Center, the agency’s mobile launcher 1 is transported inside the Vehicle Assembly Building in preparation for integration of the Artemis II Moon rocket.
The 4.2-mile trek from Launch Pad 39B to the Vehicle Assembly Building along the crawlerway normally takes eight to 12 hours atop NASA’s crawler-transporter 2, though teams paused the roll operations several times as planned to ensure the operation teams had scheduled breaks and rest. The operation resumed at 1:41 a.m. EDT, Friday, Oct. 4.
Standing 380 feet tall, the mobile launcher – which will be used to assemble, process, and launch the SLS (Space Launch System) rocket and Orion spacecraft – contains all the connection lines – known as umbilicals – and ground support equipment that will provide the rocket and spacecraft with the power, communications, fuel, and coolant necessary for launch. This will be the mobile launcher’s last solo trek out to the launch pad ahead of integration of the Artemis Moon rocket, and it will remain inside the Vehicle Assembly Building until it is ready to return to the pad with the rocket for a tanking test.
The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.
NASA rolled closer to integrating elements of the Artemis II Moon rocket together as teams with the agency’s Exploration Ground Systems Program at Kennedy Space Center in Florida began moving the mobile launcher 1 from Launch Complex 39B along a 4.2 mile stretch back to the Vehicle Assembly Building. First motion of the mobile launcher, atop NASA’s crawler-transporter 2, occurred at 12:09 a.m. EDT Thursday, Oct. 3.
Teams rolled the mobile launcher out to Kennedy’s Pad 39B in August 2023 for upgrades and a series of ground demonstration tests in preparation for NASA’s Artemis II mission. These preparations ranged from a launch day demonstration for the crew, closeout crew, and the pad rescue team, to testing the emergency egress system, water flow system, and the new liquid hydrogen sphere at the launch pad.
On its way to transport the mobile launcher back from the pad, NASA’s crawler-transporter 2 also achieved a milestone nearly 60 years in the making. Already designated by Guinness World Records as the heaviest self-powered vehicle – larger than a baseball infield and weighing approximately 6.65 million pounds – the crawler reached 2,500 miles traveled since its construction in 1965.
The mobile launcher is expected to arrive outside the Vehicle Assembly Building around 10 a.m. Thursday, Oct.3, before the Exploration Ground Systems teams move it into High Bay 3 on Friday, Oct.4.
Follow the livestream of the mobile launcher on the move.
Teams have joined the Artemis III European Service Module and crew module adapter for NASA’s Orion spacecraft inside the Neil A. Armstrong Operations and Checkout (O&C) Building at NASA’s Kennedy Space Center in Florida, following the completion of the Integration Readiness Review on Sept. 17.
The ESA (European Space Agency)-provided European Service Module is assembled by Airbus in Bremen, Germany, from parts made in 10 European countries and the United States. It acts as the driving force behind the Orion spacecraft for deep space exploration, providing essential propulsion, thermal control, and electrical power. The module also will supply astronauts with vital resources like water and oxygen, ensuring they’re well-supported during their journey to the Moon.
The crew module adapter bridges electrical, data, and fluid systems between Orion’s crew and service modules with an umbilical connector, and it also houses electronic equipment for communications, power, and control.
The integrated European Service Module and crew module adapter, which together make the service module, will undergo final inspections before engineers move it to the clean room inside the spaceport’s O&C high bay for welding operations. Later in the production flow, the Artemis III crew module will be connected to the service module via the crew module adapter.
The European Service Module is managed by the Orion team at NASA’s Glenn Research Center in Cleveland. The arrival of the Artemis III hardware to Kennedy marks the first time two Orion service modules have been inside the O&C facility at the same time during the agency’s Artemis campaign. The Artemis II service module is already mated to the crew module, and engineers continue to process the integrated modules inside the facility ahead of the test flight.
Following successful testing earlier this year of the high-speed film and high-speed digital cameras on mobile launcher 1 and Launch Pad 39B, teams at NASA’s Kennedy Space Center in Florida recently completed additional testing to gather more data for the film cameras ahead of the Artemis II mission.
Building on the first test, engineers with the agency’s Exploration Ground Systems Program updated the software that activates the film cameras remotely from the firing room at the spaceport’s Launch Control Center. Teams turned on the cameras remotely to demonstrate two different capabilities: triggering the cameras through the countdown clock, which is how these cameras will normally operate during the launch countdown, and activating them through the emergency camera control panel, which allows teams to turn on the cameras in the unlikely event of an emergency during launch countdown.
The 68 high-speed cameras, which start during the final 12 seconds of the countdown, will provide views of the rocket and surrounding ground structures during launch. The imagery also is used in detailed post-launch analysis.
This test is part of integrated testing to verify and validate the ground systems that will support launch. The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon.
NASA is making strides with the Artemis campaign as key components for the SLS (Space Launch System) rocket continue to make their way to NASA’s Kennedy Space Center in Florida. Teams with NASA and Boeing loaded the core stage boat-tail for Artemis III and the core stage engine section for Artemis IV onto the agency’s Pegasus barge at Michoud Assembly Facility in New Orleans on Aug. 28.
The core stage hardware joins the launch vehicle stage adapter for Artemis II, which was moved onto the barge at NASA’s Marshall Space Flight Center in Huntsville, Alabama, on Aug. 21. Pegasus will ferry the multi-mission rocket hardware more than 900 miles to the Space Coast of Florida. Teams with the NASA’s Exploration Ground Systems Program will prepare the launch vehicle stage adapter for Artemis II stacking operations inside the Vehicle Assembly Building, while the core stage hardware will be moved to Kennedy’s Space Systems Processing Facility for outfitting. Beginning with Artemis III, core stages will undergo final assembly at Kennedy.
The launch vehicle stage adapter is essential for connecting the rocket’s core stage to the upper stage. It also shields sensitive avionics and electrical components in the rocket’s interim cryogenic propulsion stage from the intense vibrations and noise of launch.
The boat-tail and engine section are crucial for the rocket’s functionality. The boat-tail extends from the engine section, fitting snugly to protect the rocket’s engines during launch. The engine section itself houses more than 500 sensors, 18 miles of cables, and key systems for fuel management and engine control, all packed into the bottom of the towering 212-foot core stage.
NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
For more on NASA SLS, visit: https://www.nasa.gov/sls
Teams with NASA’s Exploration Ground Systems (EGS) Program at the agency’s Kennedy Space Center completed an emergency egress system demonstration throughout the course of several days at Launch Complex 39B ahead of the Artemis II test flight that will carry four astronauts around the Moon.
The EGS team practiced emergency procedures during day and nighttime launch scenarios with the closeout crew, the team responsible for helping the astronauts get inside the Orion spacecraft, and the Pad Rescue team, which would aid personnel away from the launch pad in an emergency.
Training included exiting the white room in the crew access arm of the mobile launcher, the area where the crew enters and exits Orion, while the fire suppression system was fully activated. The team then evacuated to the terminus area, the location at the perimeter of the launch pad where the emergency egress baskets come to a stop. For this test, personnel did not ride down the baskets, but did have the opportunity to practice getting inside the baskets when on the mobile launcher and exiting them at the terminus area. Once there, armored emergency response vehicles drove the team away to one of the designated safe site locations at Kennedy.
“Our latest integrated ground systems test is about demonstrating the capability of the entire emergency egress response,” said Charlie Blackwell-Thompson, Artemis launch director. “From the time an emergency condition is declared until we have the crews, both flight and ground, safely accounted for outside the hazardous area.”
During a real emergency, personnel will use the emergency egress baskets, which are suspended on a track cable that connects the mobile launcher to the perimeter of the pad. From there, they will travel down the 1,335-foot-long cables where the emergency response vehicles will drive them away to safety. Prior to this test and throughout the course of several months, teams conducted several basket release demonstrations to validate the system.
During this test campaign the Artemis launch team also conducted an emergency egress demonstration simulation to practice how team members would respond to an emergency taking place at the pad during launch countdown.
EGS team members will have another opportunity to practice the emergency egress procedures with the Artemis II crew during a test closer to launch when the rocket is at the launch pad.
NASA’s SLS (Space Launch System) rocket core stage for the Artemis II mission is inside the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida.
Tugboats and towing vessels moved the barge and core stage 900-miles to the Florida spaceport from NASA’s Michoud Assembly Facility in New Orleans, where it was manufactured and assembled.
Team members with NASA’s Exploration Ground Systems Program safely transferred the 212-foot-tall core stage from the agency’s Pegasus barge, which arrived at NASA Kennedy’s Complex 39 turn basin wharf on July 23, onto the self-propelled module transporter, which is used to move large elements of hardware. It was then rolled to the Vehicle Assembly Building transfer aisle where teams will process it until it is ready for rocket stacking operations.
In the coming months, teams will integrate the rocket core stage atop the mobile launcher with the additional Artemis II flight hardware, including the twin solid rocket boosters, launch vehicle stage adapter, and the Orion spacecraft.
The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.
NASA’s powerful SLS (Space Launch System) rocket core stage for the Artemis II mission arrived on Tuesday, July 23, at the agency’s Kennedy Space Center in Florida. The core stage will help power SLS when it launches four astronauts around the Moon for the first crewed flight of SLS and the Orion spacecraft during the Artemis II test flight.
The core stage, aboard NASA’s Pegasus barge, traveled from the agency’s Michoud Assembly Facility in New Orleans and spent seven days coasting through the Gulf of Mexico and then the Atlantic Ocean before arriving at NASA Kennedy’s Complex 39 turn basin wharf.
The 212-foot-tall SLS core stage, its propellant tanks, avionics, flight computer systems, and four RS-25 engines, were manufactured and assembled at NASA Michoud. Now, teams with NASA Kennedy’s Exploration Ground Systems Program will prepare the rocket stage for integration ahead of launch.
The only rocket that can send the Orion spacecraft, astronauts, and supplies to the Moon on a single launch is the Space Launch System. Its core stage provides more than two million pounds of thrust and the whole rocket provides 8.8 million pounds of thrust to launch Artemis II to the Moon.
Up next, the core stage will roll to NASA Kennedy’s Vehicle Assembly Building, where teams will process it until it is ready for rocket stacking operations.
Follow the livestream of the core stage offload online expected to begin at 9 a.m. Wednesday.