Teams with NASA’s Exploration Ground Systems (EGS) Program at the agency’s Kennedy Space Center in Florida, successfully tested the new uninterruptible power supply for mobile launcher 1 while it’s in Kennedy’s Vehicle Assembly Building (VAB). This marks the next set of integrated ground systems testing the EGS teams are conducting to prepare for the Artemis II crewed mission.
During this test, engineers turned off the power to the mobile launcher and verified new batteries, which are located in High Bay 3 of the VAB, did not negatively impact any systems. These batteries provide power to the mobile launcher, SLS (Space Launch System) rocket and Orion spacecraft and allow teams to safe all systems in the unlikely event the structure loses power while it’s inside the VAB. There are similar batteries that are used for the same purpose at Launch Complex 39B, from which crewed Artemis missions will launch.
The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as Canadian Space Agency astronaut Jeremy Hansen, on a 10-day journey around the Moon.
Teams at NASA’s Kennedy Space Center in Florida successfully tested the launch control system, the software used to launch the SLS (Space Launch System) rocket and Orion spacecraft for Artemis Moon missions. The evaluations, which took place in the firing rooms of Kennedy’s Launch Control Center, included testing that software, audio, and imagery displays function well together, as well as practicing a launch pad-abort scenario.
Engineers with Exploration Ground Systems (EGS) Program divided the test into two parts: teams first ensured the software the Artemis launch team uses can handle multiple inputs at the same time. Following software testing, teams performed a launch countdown simulation starting at T-minus 2 hours and 30 minutes until liftoff, which included testingthe “abort switch,” a switch only the launch director and assistant launch director can flip in the event an abort at the launch pad is needed.
This marks the next set of integrated ground systems tests NASA completed to prepare for the Artemis II mission. The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon.
Engineers and technicians inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida stacked the first segment of the Artemis II SLS (Space Launch System) rocket boosters onto mobile launcher 1.
Comprising 10 segments total – five segments for each booster – the SLS solid rocket boosters arrived via train to NASA Kennedy in September 2023 from Northrop Grumman’s manufacturing facility in Utah. The booster segments underwent processing in the spaceport’s Rotation, Processing and Surge Facility before being transferred to the NASA’s iconic VAB for stacking operations.
Technicians inside the 525-foot-tall facility used an overhead crane to lift the left aft assembly onto the mobile launcher. Up next, workers will install the right aft assembly, placing it carefully onto the 380-foot-tall structure used to process, assemble, and launch the SLS rocket and Orion spacecraft.
The first components of the Artemis II Moon rocket to be stacked, the solid rocket boosters will help support the remaining rocket segments and the Orion spacecraft during final assembly. At launch, the 177-foot-tall twin solid rocket boosters provide more than 75 percent of the total SLS thrust during liftoff from NASA Kennedy’s Launch Pad 39B.
Since the mobile launcher returned in October from Launch Pad 39B to the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, work has been underway for upcoming stacking operations of NASA’s SLS (Space Launch System) Moon rocket.
To prepare for launch, the mobile launcher is undergoing optical scans, system checkouts, and umbilical refurbishment, including installation of the aft skirt electrical umbilicals.
The booster segments soon will move from the Rotation, Processing and Surge Facility to the VAB via a transporter. The aft assemblies, or bottom portions of the five segment boosters, will be situated in the facility’s transfer aisle then lifted atop the mobile launcher in High Bay 3.
The examinations and preparations of the mobile launcher and rocket elements lay the groundwork for Artemis II crewed test flight around the Moon.
NASA is making strides with the Artemis campaign as key components for the SLS (Space Launch System) rocket continue to make their way to NASA’s Kennedy Space Center in Florida. Teams with NASA and Boeing loaded the core stage boat-tail for Artemis III and the core stage engine section for Artemis IV onto the agency’s Pegasus barge at Michoud Assembly Facility in New Orleans on Aug. 28.
The core stage hardware joins the launch vehicle stage adapter for Artemis II, which was moved onto the barge at NASA’s Marshall Space Flight Center in Huntsville, Alabama, on Aug. 21. Pegasus will ferry the multi-mission rocket hardware more than 900 miles to the Space Coast of Florida. Teams with the NASA’s Exploration Ground Systems Program will prepare the launch vehicle stage adapter for Artemis II stacking operations inside the Vehicle Assembly Building, while the core stage hardware will be moved to Kennedy’s Space Systems Processing Facility for outfitting. Beginning with Artemis III, core stages will undergo final assembly at Kennedy.
The launch vehicle stage adapter is essential for connecting the rocket’s core stage to the upper stage. It also shields sensitive avionics and electrical components in the rocket’s interim cryogenic propulsion stage from the intense vibrations and noise of launch.
The boat-tail and engine section are crucial for the rocket’s functionality. The boat-tail extends from the engine section, fitting snugly to protect the rocket’s engines during launch. The engine section itself houses more than 500 sensors, 18 miles of cables, and key systems for fuel management and engine control, all packed into the bottom of the towering 212-foot core stage.
NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
For more on NASA SLS, visit: https://www.nasa.gov/sls
NASA’s SLS (Space Launch System) rocket core stage for the Artemis II mission is inside the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida.
Tugboats and towing vessels moved the barge and core stage 900-miles to the Florida spaceport from NASA’s Michoud Assembly Facility in New Orleans, where it was manufactured and assembled.
Team members with NASA’s Exploration Ground Systems Program safely transferred the 212-foot-tall core stage from the agency’s Pegasus barge, which arrived at NASA Kennedy’s Complex 39 turn basin wharf on July 23, onto the self-propelled module transporter, which is used to move large elements of hardware. It was then rolled to the Vehicle Assembly Building transfer aisle where teams will process it until it is ready for rocket stacking operations.
In the coming months, teams will integrate the rocket core stage atop the mobile launcher with the additional Artemis II flight hardware, including the twin solid rocket boosters, launch vehicle stage adapter, and the Orion spacecraft.
The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.
NASA’s powerful SLS (Space Launch System) rocket core stage for the Artemis II mission arrived on Tuesday, July 23, at the agency’s Kennedy Space Center in Florida. The core stage will help power SLS when it launches four astronauts around the Moon for the first crewed flight of SLS and the Orion spacecraft during the Artemis II test flight.
The core stage, aboard NASA’s Pegasus barge, traveled from the agency’s Michoud Assembly Facility in New Orleans and spent seven days coasting through the Gulf of Mexico and then the Atlantic Ocean before arriving at NASA Kennedy’s Complex 39 turn basin wharf.
The 212-foot-tall SLS core stage, its propellant tanks, avionics, flight computer systems, and four RS-25 engines, were manufactured and assembled at NASA Michoud. Now, teams with NASA Kennedy’s Exploration Ground Systems Program will prepare the rocket stage for integration ahead of launch.
The only rocket that can send the Orion spacecraft, astronauts, and supplies to the Moon on a single launch is the Space Launch System. Its core stage provides more than two million pounds of thrust and the whole rocket provides 8.8 million pounds of thrust to launch Artemis II to the Moon.
Up next, the core stage will roll to NASA Kennedy’s Vehicle Assembly Building, where teams will process it until it is ready for rocket stacking operations.
Follow the livestream of the core stage offload online expected to begin at 9 a.m. Wednesday.
NASA’s Orion spacecraft for the Artemis II mission was lifted out of the Final Assembly and System Testing cell on June 28 inside the Neil A. Armstrong Operations and Checkout building at NASA’s Kennedy Space Center in Florida. The integrated spacecraft has been undergoing final rounds of testing and assembly, including end-to-end performance verification of its subsystems and checking for leaks in its propulsion systems.
A 30-ton crane returned Orion into the recently renovated altitude chamber where it underwent electromagnetic testing. The spacecraft now will undergo a series of vacuum chamber qualification testing. The tests will subject the spacecraft to a near-vacuum environment by removing air, thus creating a space where the pressure is extremely low. This results in no atmosphere, similar to the one the spacecraft will experience during future lunar missions.
Testing will span approximately a week, with technicians collecting data from the spacecraft’s chamber, cabin, and the environmental control and life support system to test spacesuit functionality. The data recorded during these tests will be used to qualify the spacecraft to safely fly the Artemis II astronauts through the harsh environment of space.
Teams at NASA’s Michoud Assembly Facility in New Orleans have structurally joined all four RS-25 engines onto the core stage for NASA’s Artemis II Moon rocket. The flight test is the agency’s first crewed mission under Artemis.
Technicians added the first engine to NASA’s SLS (Space Launch System) rocket core stage Sept. 11. Teams installed the second engine onto the stage Sept. 15 with the third and fourth engines Sept. 19 and Sept. 20. Technicians with NASA, Aerojet Rocketdyne, an L3Harris Technologies company and the RS-25 engines lead contractor, along with Boeing, the core stage lead contractor, now will focus efforts on the complex task of fully securing the engines to the stage and integrating the propulsion and electrical systems within the structure.
The SLS core stage, at 212 feet, is the backbone of the Moon rocket. Its two huge propellant tanks provide more than 733,000 gallons of super-chilled liquid propellant to the four RS-25 engines, while the stage’s flight computers, avionics, and electrical systems act as the “brains” of the rocket. During Artemis II, the RS-25 engines will together provide more than 2 million pounds of thrust for eight minutes of flight, helping to send the Artemis II crew beyond low-Earth orbit to venture around the Moon.
NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.
Technicians at NASA’s Michoud Assembly Facility in New Orleans have installed the first of four RS-25 engines on the core stage of the agency’s SLS (Space Launch System) rocket that will help power NASA’s first crewed Artemis mission to the Moon. During Artemis II, NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen will launch on SLS and journey around the Moon inside the Orion spacecraft during an approximately 10-day mission in preparation for future lunar missions.
The Sept. 11 engine installation follows the joining of all five major structures that make up the SLS core stage earlier this spring. NASA, lead RS-25 engines contractor Aerojet Rocketdyne, an L3 Harris Technologies company, and Boeing, the core stage lead contractor, will continue integrating the remaining three engines into the stage and installing the propulsion and electrical systems within the structure.
All four RS-25 engines are located at the base of the core stage within the engine section, which protects the engines from the extreme temperatures during launch and has an aerodynamic boat tail fairing to channel airflow. During launch and flight, the four engines will fire nonstop for over eight minutes, consuming propellant from the core stage’s two massive propellant tanks at a rate of 1,500 gallons (5,678 liters) per second.
Each SLS engine has a different serial number. The serial number for the engine installed Sept. 11 in position two on the core stage is E2059. It along with the engine in position one, E2047, previously flew on space shuttle flights. E2047 is the most veteran engine of the entire set flying on Artemis II with 15 shuttle flights, including STS-98, which delivered the Destiny Laboratory Module to the International Space Station in 2001. The engines installed in positions three and four (E2062 and E2063) are new engines that include previously flown hardware.
NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.