Artemis I Progress Continues in the VAB

On Jan. 11, engineers and technicians with Exploration Ground Systems retracted and extended the Orion spacecraft crew access arm as part of ongoing work leading up to the Artemis I wet dress rehearsal targeted for late February.

The arm rotates from its retracted position and interfaces with the Space Launch System (SLS) rocket at the Orion crew hatch location to provide entry and exit for the Orion crew module during operations in the Vehicle Assembly Building and at the launch pad. On crewed Artemis missions, the access arm also provides entry and exit for astronauts. The arm retracts from the Orion spacecraft before launch.

The team continues to complete final testing and closeouts of SLS and Orion. Check back for updates on the agency Artemis blog.

Artemis I Integrated Testing Continues Inside Vehicle Assembly Building

Graphic chart of Artemis I milestones to laucnh.Engineers and technicians continue to complete integrated tests inside the Vehicle Assembly Building at NASA’s Kennedy Space Center as part of the lead up to launch of the Artemis I mission.

On Dec. 17, the team completed a communications end-to-end test to ensure the rocket, spacecraft and ground equipment can communicate with the consoles in the launch and mission control centers. This verification of communication systems via radio frequency ensures the launch team will be able to monitor the Space Launch System (SLS) rocket and Orion spacecraft on the ground as well as during flight. The test used an antenna in the VAB, another near the pad that will cover the first few seconds of launch, as well as a more powerful antenna that uses the Tracking Data Relay Satellite and the Deep Space Network.

On Dec. 20, the Exploration Ground Systems team conducted a countdown sequencing test to demonstrate the ground launch software and ground launch sequencer, which checks for health and status of the vehicle sitting on the pad. The simulated launch countdown tested the responses from SLS and Orion, ensuring the sequencer can run without any issues. On launch day, the ground launch sequencer hands off to the rocket and spacecraft and an automated launch sequencer takes over around 30 seconds before launch. Engineers have added a second sequencing test before rollout to account for differences between the emulator and flight hardware identified during the initial test.

Last week engineers and technicians successfully removed and replaced an engine controller from one of four RS-25 engines after the team identified an issue during a power-up test of the rocket’s core stage. Engineers are now performing standard engine controller diagnostic tests and check-outs, including controller power-up and flight software load. Subsequently, the team will work to complete all remaining SLS pre-flight diagnostic tests and hardware closeouts in advance of a mid-February rollout for a wet dress rehearsal in late February. NASA will set a target launch date after a successful wet dress rehearsal test.

SLS will be the most powerful rocket in the world and is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission. With the Artemis missions, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and Orion, along with the commercial human landing system and the Gateway that will orbit the Moon, are NASA’s backbone for deep space exploration.

Artemis I Integrated Testing Update

NASA’s Space Launch System (SLS) rocket and Orion spacecraft are undergoing integrated testing inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida to ensure they are “go” for launch of the Artemis I mission early next year.

After stacking the Orion atop the SLS rocket, the engineers completed several tests to ensure the rocket and spacecraft are ready to roll to the launch pad ahead of the Artemis I wet dress rehearsal. These tests included ensuring Orion, the core stage, and boosters can communicate with the ground systems and verification testing to make sure all the pieces of the rocket and spacecraft can power up and connect to the consoles in the Launch control Center.

During a recent core stage power test, engineers identified an issue with one of the RS-25 engine flight controllers. The flight controller works as the “brain” for each RS-25 engine, communicating with the SLS rocket to provide precision control of the engine as well as internal health diagnostics. Each controller is equipped with two channels so that there is a back-up, should an issue arise with one of the channels during launch or ascent. In the recent testing, channel B of the controller on engine four failed to power up consistently.

The controller had powered up and communicated successfully with the rocket’s computers during preliminary integrated testing, in addition to performing a full duration hot fire during Green Run testing with all four RS-25 engines earlier this year at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. NASA and lead contractor for the RS-25 engines, Aerojet Rocketdyne, also test all RS-25 engines and flight controllers for Artemis missions at Stennis prior to integration with the rocket.

After performing a series of inspections and troubleshooting, engineers determined the best course of action is to replace the engine controller, returning the rocket to full functionality and redundancy while continuing to investigate and identify a root cause. NASA is developing a plan and updated schedule to replace the engine controller while continuing integrated testing and reviewing launch opportunities in March and April.

Verification testing of the Interim Cryogenic Propulsions Stage is ongoing along with closeouts of the boosters, and parallel work continues with core stage engineering testing. Communication end-to-end testing is underway, and countdown sequence testing will begin as early as next week to demonstrate all SLS and Orion communication systems with the ground infrastructure and launch control center. Integrated testing will culminate with the wet dress rehearsal at historic Launch Complex 39B. NASA will set a target launch date after a successful wet dress rehearsal test.

SLS will be the most powerful rocket in the world and is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission. With the Artemis missions, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and Orion, along with the commercial human landing system and the Gateway that will orbit the Moon, are NASA’s backbone for deep space exploration.

 

Artemis II Rocket Hardware Ready for Final Outfitting

Materials scientists finished applying the thermal protection system to NASA’s Space Launch System (SLS) launch vehicle stage adapter and moved it to another manufacturing area to finish outfitting the flight hardware for the Artemis II mission.

Artemis II launch vehicle stage adapter
Technicians at NASA’s Marshall Space Flight Center in Huntsville, Alabama moved the Artemis II launch vehicle stage adapter to another manufacturing area to finish outfitting the flight hardware on Dec. 8, 2021.

On Dec. 8, 2021, a NASA transporter moved the adapter which was built at NASA’s Marshall Space Flight Center by lead contractor Teledyne Brown Engineering in Huntsville, Alabama. Teams recently completed applying the spray-on foam insulation that will protect the rocket hardware during flight. Now, crews will outfit the inside of the adapter with platforms that will allow teams to access the inside during assembly with the rest of the rocket. Technicians will also install special systems that allow the adapter and the core stage to separate from the Interim Cryogenic Propulsion Stage, or ICPS. The adapter connects the rocket’s core stage to the ICPS, which provides the power to perform the trans-lunar injection maneuver to send the Orion spacecraft to the Moon. This adapter is for the Artemis II mission that will be the first to return American astronauts to lunar orbit.

launch vehicle stage adapter
Prior to the launch vehicle stage adapter being moved on Dec. 8, 2021, teams recently completed applying the spray-on foam insulation that will protect the rocket hardware during flight.

SLS Booster Fired up to Test Improved Design for Future Artemis Missions

A team of NASA and Northrop Grumman engineers fired a 2-foot-diameter, subscale solid rocket booster on Dec. 2, 2021, at NASA’s Marshall Space Flight Center in Huntsville, Alabama. This test, conducted in Marshall’s East Test Area, was the second of three tests supporting the Booster Obsolescence and Life Extension (BOLE) program, which will have an upgraded design to power the evolved configuration of the Space Launch System (SLS) rocket on flights after Artemis VIII.

24-inch diameter subscale solid rocket test
NASA engineers successfully completed a 24-inch diameter subscale solid rocket test on Dec. 2, 2021, at NASA’s Marshall Space Flight Center in Huntsville, Alabama, in the East Test Area. The sub-scale motor produced 76,400 pounds of thrust during the hot fire test. This test was the first of two tests supporting the Booster Obsolescence and Life Extension (BOLE) development effort that includes a new motor design for upcoming Artemis missions after Artemis VIII. This 334-inch motor was the longest subscale motor tested to date.

The BOLE booster will be a larger and more powerful solid rocket motor than the current SLS solid rocket booster. The boosters for the first eight flights of the Artemis program repurpose the steel booster cases and parts from the Space Shuttle Program with an upgraded design. The BOLE booster will implement a composite case design, replace obsolete parts with newer components, and improve the booster’s design and performance.

This test focused on the booster motors, which provide the majority of the power to launch SLS. Unlike previous subscale motor tests, this marked the first time the team could evaluate insulation and nozzle on one motor rather than two configurations, one for the nozzle and one for the insulation. During this subscale test, the motor produced 76,400 pounds of thrust.

The original test design had two segments, each 9 feet long. To get a more characteristic thrust profile, a 4.5-foot-long segment was added to the test article, totaling nearly 28 feet and making this the longest subscale motor tested to date. In addition to the added half segment, a new propellant, aft dome design, and nozzle design are included in the BOLE motor development program that will become part of the Block 2 evolved rocket.

During the test, three different internal case insulation formulations were evaluated in the aft dome. The performance results of these materials will aid in selecting a final formulation for the first full-scale test fire of the BOLE booster. As the team completes the final design for the full-scale motor, this test is an important step in learning how materials will perform at the higher pressure and performance expected for the BOLE motor as compared to current motors.

The third test of the subscale motor is currently scheduled for spring 2022 at Marshall, followed by the first full-scale BOLE motor test, tentatively scheduled for spring 2024 at Northrop Grumman’s test facility in Utah. Northrop Grumman, lead contractor for the booster, helped conduct the Marshall test and will be assisting with data evaluation.

Final Certification Run for Orion Recovery

A test version of the Orion spacecraft is loaded into the well deck of a U.S. Navy ship.
A test version of NASA’s Orion spacecraft is loaded into the well deck of a U.S. Navy ship in preparation for the ninth in a series of tests to verify and validate procedures and hardware that will be used to recover the spacecraft after it splashes down in the Pacific Ocean following the agency’s Artemis I mission. The first in an increasingly complex series of missions, Artemis I will test the Space Launch System rocket and Orion as an integrated system prior to crewed flights to the Moon. Photo credit: NASA/Pete Reutt

NASA and the U.S. Navy are preparing to head out to sea for the ninth in a series of tests to verify and validate procedures and hardware that will be used to recover the Orion spacecraft after it splashes down in the Pacific Ocean following deep space exploration missions.

NASA’s Landing and Recovery team, managed by Exploration Ground Systems, is heading from the agency’s Kennedy Space Center in Florida to Naval Base San Diego in California where they will have their final certification run for the Artemis I mission.

During the weeklong test, the joint team will conduct simulations that will exercise all the operational procedures, including nighttime, to support certification of team members for the Artemis I mission. The team will practice recovering a test version of an Orion capsule and bringing it into the well deck of a Navy ship, ensuring all personnel are properly trained before the real Orion splashes down.

Orion is the exploration spacecraft designed to carry astronauts to the Moon and destinations not yet explored by humans. It is slated to launch atop NASA’s Space Launch System rocket on its first deep space mission to pave the way for future flights with astronauts.

Stacking Operations for Artemis I Mission Nearing Completion

Orion spacecraft
Photo Credit: Frank Michaux

Teams with Exploration Ground Systems successfully lifted the Orion Spacecraft for the Artemis I mission inside the Vehicle Assembly Building on Oct. 20, 2021. Teams attached the spacecraft to one of the five overhead cranes inside the building and began lifting it a little after midnight EDT. Work is underway to fully secure Orion to the Space Launch System rocket after teams initially placed the spacecraft on top of the rocket earlier today. This operation will take several hours to make sure Orion is securely in place.

Lift Underway to Top Mega-Moon Rocket with Orion Spacecraft

Orion lifted atop SLS rocket in the VAB
Photo Credit: Chad Siwik

Final stacking operations for NASA’s mega-Moon rocket are underway inside the Vehicle Assembly Building at NASA’s Kennedy Space Center as the Orion spacecraft is lifted onto the Space Launch System (SLS) rocket for the Artemis I mission. Engineers and technicians with Exploration Ground Systems (EGS) and Jacobs attached the spacecraft to one of the five overhead cranes inside the building and began lifting it a little after midnight EDT.

Next, teams will slowly lower it onto the fully stacked SLS rocket and connect it to the Orion Stage Adapter. This will require the EGS team to align the spacecraft perfectly with the adapter before gently attaching the two together. This operation will take several hours to make sure Orion is securely in place.

NASA will provide an update once stacking for the Artemis I mission is complete.

Orion ‘Powerhouse’ for Artemis II Arrives at Kennedy

The European Service Module (ESM) for NASA’s Orion spacecraft arrives at the Launch and Landing Facility at NASA’s Kennedy Space Center in Florida on Thursday, Oct. 14, 2021.
The European Service Module for NASA’s Orion spacecraft arrives at the Launch and Landing Facility at NASA’s Kennedy Space Center in Florida on Thursday, Oct. 14, 2021. Making the journey from the Airbus Facility in Bremen, Germany, aboard a Russian Antonov aircraft, the service module will be transferred to Kennedy’s Neil A. Armstrong Operations and Checkout Facility. Photo credit: NASA/Isaac Watson

Built by teams at ESA (European Space Agency) and aerospace corporation Airbus, the European Service Module for NASA’s Orion spacecraft arrived at NASA’s Kennedy Space Center in Florida on Thursday, Oct. 14, aboard the Russian Antonov aircraft. This service module will be used for Artemis II, the first Artemis mission flying crew aboard Orion. Service module assembly was completed at the Airbus facility in Bremen, Germany, and the module traveled across the world on its journey to Kennedy.

The service module is the powerhouse that will fuel and propel Orion in space. It stores the spacecraft’s propulsion, thermal control, electrical power, and critical life support systems such as water, oxygen, and nitrogen.

The service module will be transferred from the Launch and Landing Facility to Kennedy’s Neil A. Armstrong Operations and Checkout Facility where teams from NASA and Lockheed Martin will integrate it with the crew module adapter and crew module, already housed in the facility.

With Artemis missions, NASA will land the first woman and the first person of color on the lunar surface. Artemis II will be the first crewed flight test of NASA’s Space Launch System and Orion, paving the way for human exploration to the Moon and Mars.

Final Piece of Rocket Hardware Added to Artemis I Stack

Final OSA stacked on top of the ICPS
After successfully completing the integrated modal test, technicians removed the Space Launch System (SLS) rocket’s Orion stage adapter structural test article and the Mass simulator for Orion. Then, they moved the Orion stage adapter flight hardware to the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. On Oct. 9, the Orion stage adapter was connected to the top of the Interim Cryogenic Propulsion Stage (ICPS) that provides the power to send Orion to the Moon. Soon, Orion, which rides on top of SLS, will be stacked to complete the Artemis I spaceship. Artemis I is the first integrated flight of SLS and Orion. This uncrewed flight test will be followed by Artemis II, which will be the first mission to send astronauts on a mission to orbit the Moon.

Leerlo en español aquí.

The last piece of Space Launch System (SLS) rocket hardware has been added to the stack at NASA’s Kennedy Space Center in Florida. Crews with NASA’s Exploration Ground Systems and contractor Jacobs added the Orion stage adapter to the top of the rocket inside the spaceport’s Vehicle Assembly Building. To complete the Artemis I stack, crews will soon add the Orion spacecraft and its launch abort system on top of Orion stage adapter.

The Orion stage adapter, built at NASA’s Marshall Space Flight Center in Huntsville, Alabama connects Orion to the Interim Cryogenic Propulsion Stage (ICPS), which was built by Boeing and United Launch Alliance at ULA’s factory in Decatur, Alabama. During the mission, the ICPS will fire one RL10 engine in a maneuver called trans-lunar injection, or TLI, to send Orion speeding toward the Moon.

As Orion heads to the Moon for its mission, the ICPS will separate from Orion and then deploy 10 secondary payloads that are riding to space inside the Orion stage adapter. These CubeSats have their own propulsion systems that will take them on missions to the Moon and other destinations in deep space.

While the ICPS and Orion stage adapter are making it possible for SLS to send its first science payloads to space on this uncrewed mission, they only will be used for the first three Artemis missions. The Exploration Upper Stage (EUS), a more powerful stage with four RL10 engines, will be used on future Artemis missions. The EUS can send 83,000 pounds to the Moon, which is 40 percent more weight than the ICPS. The EUS makes it possible to send Orion, astronauts, and larger and heavier co-manifested payloads to the Moon.

Artemis I will be followed by a series of increasingly complex missions. With Artemis, NASA will land the first woman and the first person of color on the lunar surface and establish long-term exploration at the Moon in preparation for human missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.