Mobile Launcher Rolls to Launch Pad for Artemis ll Testing

Under bright blue skies, the mobile launcher 1 is seen behind the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida on Aug. 16, 2023 as it gets ready to roll to Launch Pad 39B.
Mobile launcher 1 is on its way to Launch Pad 39B at NASA’s Kennedy Space Center in Florida to prepare for Artemis ll, the first crewed mission on the agency’s path to establishing a long-term presence at the Moon under Artemis.
Photo credit: NASA/Chad Siwik

Mobile launcher 1 is on its way to Launch Pad 39B at NASA’s Kennedy Space Center in Florida to prepare for Artemis ll, the first crewed mission on the agency’s path to establishing a long-term presence at the Moon under Artemis. The ground structure began its trek from the west park site at approximately 8:27 a.m. EDT on Aug.16 atop the crawler-transporter 2. It will stop at the gate of pad 39B and resume its journey on Aug. 17.

At 380 feet tall above the ground, the mobile launcher is used to assemble, process, and launch NASA’s SLS (Space Launch System) rocket and Orion spacecraft. It contains all of the connection lines – known as umbilicals – and ground support equipment that will provide the rocket and spacecraft with the power, communications, fuel and coolant necessary for launch.

Once the mobile launcher is at the launch pad, teams with NASA’s Exploration Ground Systems Program will conduct a series of tests and continue ground systems upgrades for both the mobile launcher 1 and the launch pad. These preparations will range from a launch day demonstration for the crew, closeout crew, and the pad rescue team to rehearse operations to testing the emergency egress system and the new liquid hydrogen sphere.

Artemis II Orion Crew Module Acoustic Testing Complete

Artemis II crew members, shown inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, check out their Orion crew module on Aug. 8, 2023. From left are: Victor Glover, pilot; Reid Wiseman, commander; Christina Hammock Koch, mission specialist; and Jeremy Hansen, mission specialist. The crew module is undergoing acoustic testing ahead of integration with the European Service Module. Artemis II is the first crewed mission on NASA’s path to establishing a long-term lunar presence for science and exploration under Artemis.
Artemis II crew members, shown inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, check out their Orion crew module on Aug. 8, 2023. From left are: Victor Glover, pilot; Reid Wiseman, commander; Christina Hammock Koch, mission specialist; and Jeremy Hansen, mission specialist. The crew module is undergoing acoustic testing ahead of integration with the European Service Module. Artemis II is the first crewed mission on NASA’s path to establishing a long-term lunar presence for science and exploration under Artemis. Photo credit: NASA/Kim Shiflett

On Aug. 13, engineers and technicians inside the high bay of the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida successfully completed a series of acoustic tests to ensure the Orion spacecraft for NASA’s Artemis II mission can withstand the speed and vibration it will experience during launch and throughout the 10-day mission around the Moon, the first Artemis mission with astronauts.

During the testing, engineers surrounded the crew module with large stacks of speakers, and attached microphones, accelerometers, and other equipment to measure the effects of different acoustic levels. Engineers and technicians will now analyze the data collected during the tests.

Prior to testing, the four Artemis II astronauts visited the high bay and viewed their ride to the Moon. With this test complete, technicians at Kennedy are on track to integrate Orion’s crew and service modules this fall.

Artemis II Crew Visits Naval Base San Diego for Recovery Training

Artemis II astronauts inside the Vehicle Advanced Demonstrator for Emergency Recovery (VADR) during a tour of Naval Base San Diego.
From left (front to back), NASA astronauts Victor Glover, Christina Hammock Koch, and Reid Wiseman, along with Canadian Space Agency astronaut Jeremy Hansen, pose inside the Vehicle Advanced Demonstrator for Emergency Recovery (VADR) during a tour of Naval Base San Diego on July 19, 2023. VADR is a replica of the Orion crew module that will carry the astronauts around the Moon on Artemis II. Photo credit: U.S. Navy/Mass Communication Specialist 2nd Class Joshua Samoluk

The Artemis II crew – NASA astronauts Reid Wiseman, Victor Glover, Christina Hammock Koch, and Canadian Space Agency astronaut Jeremy Hansen – visited Naval Base San Diego on July 19 ahead of the first Artemis II recovery test in the Pacific Ocean, Underway Recovery Test-10. The test will build on the success of Artemis I recovery and ensure NASA and the Department of Defense personnel can safely recover astronauts and their Orion spacecraft after their trip around the Moon on the first crewed Artemis mission.

The crew met with recovery team members from NASA’s Exploration Ground Systems Program and the Department of Defense to learn more about the recovery process for their mission, which includes being extracted from the spacecraft after splashing down in the Pacific Ocean and being lifted via helicopter to the recovery ship where they will undergo routine medical checks before returning to shore.

The visit included a walkdown of the ground equipment and facilities the team uses to practice recovery procedures along with a walkthrough of the recovery ship. The crew will participate in full recovery testing at sea next year.

Orion Heat Shield Installed for NASA’s Artemis II Mission

The heat shield for the Artemis II Orion spacecraft
Installation of the heat shield for the Artemis II Orion spacecraft was recently completed at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Cory Huston

On June 25, 2023, teams completed installation of the heat shield for the Artemis II Orion spacecraft inside the high bay of the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.

The 16.5-foot-wide heat shield is one of the most important systems on the Orion spacecraft ensuring a safe return of the astronauts on board. As the spacecraft returns to Earth following its mission around the Moon, it will be traveling at speeds of about 25,000 mph and experience outside temperatures of nearly 5,000 degrees Fahrenheit. Inside the spacecraft, however, astronauts will experience a much more comfortable temperature in the mid-70s thanks to Orion’s thermal protection system.

Up next, the spacecraft will be outfitted with some of its external panels ahead of acoustic testing later this summer. These tests will validate the crew module can withstand the vibrations it will experience throughout the Artemis II mission, during launch, flight, and landing.

Once acoustic testing is complete, technicians will attach the crew module to Orion’s service module, marking a major milestone for the Artemis II mission, the first mission with astronauts under Artemis that will test and check out all of Orion’s systems needed for future crewed missions.

NASA’s Artemis II European Service Module is Making FAST Moves

Technicians at NASA’s Kennedy Space Center in Florida operate a 30-ton crane to lift and transfer the Orion spacecraft’s service module into the FAST (final assembly and system testing) cell on May 22, 2023, inside the spaceport’s Neil A. Armstrong Operations and Checkout Building.

Teams are performing final checkouts of the Orion spacecraft’s service module before integrating the crew and service modules for Artemis II, the first Artemis mission with crew. In parallel, technicians from Airbus will conduct inspections of the solar array wings following the successful completion of service module acoustic testing in May, which ensured the service module can withstand the speed and vibration it will experience during launch and throughout the mission. During the inspections, each of the four panels will be fully redeployed and reexamined. The crew module also will undergo acoustic testing ahead of joining with the service module.

Provided by ESA (European Space Agency), the service module is the powerhouse that will fuel, propel, and provide in-space maneuvering capability, and is responsible for life support commodities such as water and breathable air for astronauts onboard Orion in support of future Artemis missions.

View additional imagery of the service module’s move to the final assembly and system testing cell.

Artemis II Orion Service Module Completes Acoustic Testing

The European Service Module for the Artemis II mission is photographed inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida while it was configured for acoustic testing. Photo credit: NASA/Amanda Stevenson

Engineers recently completed a series of acoustic tests on the European Service Module for NASA’s Artemis II mission while inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.

During the testing, engineers surrounded the service module with large speakers and attached microphones, accelerometers, and other equipment to measure the effects of different acoustic levels. Engineers and technicians will analyze the data collected during the tests to ensure the service module can withstand the speed and vibration it will experience during launch and throughout the mission.

With this test complete, the team is on track to integrate Orion’s crew and service modules together later this year.

Artemis II Moon Astronauts to be Named April 3

NASA and CSA (Canadian Space Agency) will announce during an event at 11 a.m. EDT on Monday, April 3, from NASA Johnson Space Center’s Ellington Field in Houston, the four astronauts who will venture around the Moon on Artemis II. Traveling aboard NASA’s Orion spacecraft and launching on the Space Launch System rocket, the mission is the first crewed flight test on the agency’s path to establishing a long-term scientific and human presence on the lunar surface.  The event will air on NASA Television, the NASA app, and the agency’s website.

Watch the video in Spanish.

NASA’s ShadowCam Images Permanently Shadowed Regions from Lunar Orbit

With the success of NASA’s Artemis I launch, the previously unexplored shadowy regions near the lunar South Pole where Artemis astronauts will land in 2025, are more within our reach than ever before.

One instrument that will support these future lunar exploration efforts is a hypersensitive optical camera called ShadowCam. ShadowCam is one of six instruments on board the Korea Aerospace Research Institute (KARI)’s Korea Pathfinder Lunar Orbiter, known as Danuri, which launched in August 2022 and entered lunar orbit last December.

Previous cameras in lunar orbit were designed to acquire images of sunlit surfaces. Developed by Malin Space Science Systems and Arizona State University, ShadowCam’s primary function is to collect images within permanently shadowed regions near the lunar poles. These areas never receive direct sunlight and are thought to contain water ice – a significant resource for exploration that can be used as fuel or oxygen and for other habitation applications.

Building on cameras developed for NASA’s Lunar Reconnaissance Orbiter, ShadowCam is 200 times more light-sensitive and is therefore able to capture detailed images within permanently shadowed regions – even in the absence of direct light – by using the light that is reflected off nearby geologic features such as mountains or the walls of craters.

Images of the permanently shadowed wall and floor of Shackleton Crater captured by Lunar Reconnaissance Orbiter Camera (LROC) (left) and ShadowCam (right). Each panel shows an area that is 5,906 feet (1,800 meters) wide and 7,218 feet (2,200 meters) tall. Image Credit: NASA/KARI/ASU

In addition to mapping the light reflected by permanently shadowed regions to search for evidence of ice deposits, ShadowCam will also observe seasonal changes and measure the terrain inside the craters, all in service of science and future lunar exploration efforts. The high-resolution images could help scientists learn more about how the Moon has evolved, how water is trapped and preserved in permanently shadowed regions, and could help inform site selection and exploration planning for Artemis missions.

Since Danuri entered lunar orbit, ShadowCam has been in an operational checkout period, during which it has been collecting dozens of images of the lunar polar regions, including an image of Shackleton Crater, to calibrate and test its functionality. Following this checkout period, which will conclude later this month, ShadowCam will start its campaign to capture images of shadowed terrain as Danuri routinely passes over them during the planned mission of 11 months.

Read more about ShadowCam and Danuri.

 

CAPSTONE to Test Technologies After Recovery from Communications Issue

NASA’s CAPSTONE – short for Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment – is in good health following a communications issue that began in late January, and the mission team is preparing for upcoming technology demonstration tests.

Beginning Jan. 26, CAPSTONE was unable to receive commands from ground operators. The spacecraft remained overall healthy and on-course throughout the issue, sending telemetry data back to Earth. On Feb. 6, an automatic command-loss timer rebooted CAPSTONE, clearing the issue and restoring two-way communication between CAPSTONE and the ground.

The CAPSTONE team, led by Advanced Space, is now preparing for continued testing of the spacecraft’s Cislunar Autonomous Positioning System, or CAPS, and other technology demonstrations.

CAPS is a navigation technology developed by Advanced Space that uses data between two or more spacecraft to pinpoint a satellite’s location in space. The test will involve two spacecraft: CAPSTONE and NASA’s Lunar Reconnaissance Orbiter (LRO). Following interface testing with LRO’s ground systems, the CAPSTONE team attempted to gather crosslink measurements in mid-January. During this test, LRO received a signal from CAPSTONE, but CAPSTONE did not collect crosslink ranging measurements from the returned signal. These results will help improve additional CAPS tests over the coming weeks.

The team is also preparing for the mission’s other technology demonstrations, including a new CAPS data type that will use one-way uplink measurements enabled by the spacecraft’s Chip Scale Atomic Clock.

Since arriving to orbit on Nov. 13, CAPSTONE has completed more than 12 orbits in its near-rectilinear halo orbit (NRHO) – the same orbit for Gateway – surpassing one of the mission’s objectives to achieve at least six orbits. The mission team has performed two orbit maintenance maneuvers in this time. These maneuvers were originally scheduled to happen once per orbit, but the mission team was able to reduce the frequency while maintaining the correct orbit. This reduces risk and complexity for the mission and informs plans for future spacecraft flying in this orbit, like Gateway.

CAPSTONE is owned by Advanced Space and the spacecraft was designed and built by Terran Orbital. Operations are performed jointly by teams at Advanced Space and Terran Orbital. The mission is funded by the Small Spacecraft Technology Program in NASA’s Space Technology Mission Directorate.

Read the full update from Advanced Space.