By Ken Buesseler, Woods Hole Oceanographic Institution /NORTHERN ATLANTIC OCEAN/
For those of us who grew up watching Gilligan’s Island, we all know the fateful story of the “three-hour tour.” Well, as this oceanographer knows, that TV storm is not that different from the weather we are facing out here in the North Atlantic on the research vessel Sarmiento de Gamboa.
Our story takes significantly longer than three hours, as we set off at the beginning of this month on a three-week tour – 18 days to be more exact. Add in three years of planning the science mission, plus two years of coordinating three research vessels to rendezvous at the same time and location, one year of COVID-related delays, two weeks of quarantine in a hotel in Vigo, Spain, and you get the idea of how much time and effort we expended before we even left the dock.
Our mission is to gain a better understanding of the mysteries of the ocean’s twilight zone. The twilight zone refers to the vast layer of the ocean below where sun penetrates and above the abyssal dark ocean. At the surface, marine plants, or phytoplankton, convert carbon dioxide into organic matter just like plants on land. This organic carbon is the food supply eaten by zooplankton, or microscopic animals, and then fish and other animals up the food chain. As they eat, they expel fecal matter – yes, poop – which attaches to other particles in the water, and forms what scientists call “marine snow.” Typically, only a small fraction of the marine snow makes its way downwards through the twilight zone to the deep sea.
The reason we need to pay close attention to marine snow is that it plays an important role in climate regulation. Marine snow carries carbon with it and settles into the deep ocean, which influences the levels of carbon dioxide in the atmosphere and thus affects our climate and weather on land.
So we are out here to capture the marine snow fall, to better understand its variation, and predict how it will change in the future.
Mother Nature has her own agenda.
Two days after sailing northwest from Vigo, Spain, we reached our study site where two vessels, the RSS Discovery and the RSS James Cook, have already started sampling.
So far so good.
After 36 hours, winds pick up to 50 knots and seas quickly swell to 15-20 feet or more. The Captain makes the call to stop all science operations. At that point, we double-check all the ropes, ratchet straps, and bungies holding down our expensive scientific gear in the lab, feel gratitude for having strong, seafaring stomachs (or at least I do) and wait.
With the hatches locked, we hear and feel waves crashing into the ship. We wonder if the rolls can get even larger than 30 degrees. We head 100 miles south to avoid the worst of the storm. And we wait.
We chat with each other, read books, and watch videos. We go to normal meals in the mess, amazed that the cooks on board can still prepare a full, hot meal in these conditions. We use one hand to steady our plates, the other hand to hang onto the table. Occasionally we manage to shove some food in our mouths.
After four days, the weather improves enough to allow us to sample again.
We enjoy 36 hours of continuous science operations. At one point, we bring all three large vessels together (a few ship lengths apart) to compare results from common instruments used on each ship.
Our ship carries new technologies to add “eyes in the twilight zone” using different on-board and robotic imaging systems that we deploy for autonomous missions.
A second ship carries out survey work, following and crossing circular tracks that the ocean currents make out here called eddies.
The third ship stays faithfully in the center, following the same patch of water, focused largely on marine biological processes and their chemical and physical controls. They deploy unique devices to capture the marine snow fall directly.
Quite simply, we need to work together to put all the puzzle pieces together. But Mother Nature has more in store for us.
We get hit a second time with 48 hours of waves and winds. This time we head north to avoid the worst of it.
And again, I find myself sitting and waiting, not stranded on an idyllic island like Gilligan and the party of the Minnow (the professor character always appealed to me the most) but stuck on a 230-foot research vessel, waiting to get back to the work we came here to do.
Despite the rough seas, I love my job. The understanding we gain by visiting these remote and sometimes stormy places, makes up for the discomfort and effort it takes to be here.
As we weather the final dregs of the storm, I can’t get the theme song from Gilligan’s Island out of my head “just sit right back, and you’ll hear a tale…”
I’ll certainly have some tales to share.
We’ve already been sharing data between the ships. In less than a week, we will pack up our gear, and bring our samples and data back to the Woods Hole Oceanographic Institution. We will share our science stories, as well as stories of raging seas, and the challenges we face just to do our jobs.
All these experiences remind us of what we can and can’t control as we work to better understand this ocean planet.