The Advantage of Laboratory Time in Space

This week, commentsfrom guest blogger and International Space Station Principal Investigator Dr.Mark Weislogel, as he reflects on the importance, advantages and joys oflong-duration investigations on the space station.

Scientists who have not used the International Space Stationbefore don’t always have a feel for how space experiments can be as successful,if not more so than those using other low-g environments. Researchers used tothe shuttle experience think in terms of a very small window of time to makechanges and adapt. Short duration investigations are intense and competitive.In hindsight, it seems they are high risk. If you have a three-hour slot to runyour experiment and some setback occurs that cannot be resolved, you lose aportion of your data.

On the space station this can also happen, but when youengage in long-duration investigations, you quickly realize that you have timeto think things over. Because of this, when unexpected events occur, you canrespond in a creative and curious way. The success factor of long-durationexperiments is high—barring any failures in equipment, a risk in any lab. Infact, you are very likely to discover things you would not anticipate; thingscompletely peripheral to the goal, which you will observe for the first time,due to man’s limited experience in microgravity.

When a setback occurs on the station, you get partialresults and then the investigation goes into storage or offline for a time.When you come back, you’ve had time to think about things. In my experiencewith the CapillaryFlow Experiment or CFE, the participating astronaut also had suggestions,an advantage to working with humans in space. Procedures were changed around fromthe previous run and we ended up with more data than ever planned and saw newthings en route. [Ground operations for the CFE investigation took place at theNational Center for Microgravity Research and Glenn Research Center, Cleveland,Ohio.]


NASA astronaut ScottKelly, Expedition 26 commander, works on the hardware setup for a CapillaryFlow Experiment (CFE) Vane Gap-1 experiment. The CFE is positioned on theMaintenance Work Area in the Destiny laboratory of the International SpaceStation. CFE observes the flow of fluid, in particular capillary phenomena, inmicrogravity.
(NASA Image ISS026E017024)

Transitions in fluid locations due to slight changes incontainer geometry. As a central vane is rotated in this elliptic cylindercontainer critical wetting geometries are established leading to wicking alongthe vane-wall gap, and/or a bulk shift of fluid from right to left.
(Image Credit: Suni Williams)

Time and resources factor into any discovery, of course, andsignificant astronautinvolvement makes a big difference, too; certainly more so than inautomated or robotic investigations. But even with the CapillaryChannel Flow or CCF investigation that I am working on right now, it is amazing! If you have a pump and some valves, you can configure them in many ways you did not anticipate and widen your data set. You want to get what you planned on, but it is a delight to get all this extra information that you never expected!

My previous experience dealt with handheld, smallexperiments, so to me CCF is a complicated investigation. CCF is focused ontwo-phase flow—a liquid system with gas bubbles. In space, the gas does notrise and we have not had many opportunities to study systems like this inmicrogravity. The investigation has pumps and valves and plungers andseparation chambers. While there are other studies devoted only to two-phaseflow, CCF has two-phase flow all throughout it just to generate the flow thatwe are interested in watching. CCF operates continuously, controlled from theground through the Microgravity Science Glovebox or MSG interface and does notrequire crew interaction.

We have gotten to the point with CCF where we can get around20 data points per day and we are on our way to where we can get hundreds andhundreds of data points in a 24/7 operation. The system is working, thoughthere are setbacks—often times with loss of signal during our commanding or dueto our own thing—in trying to take inventories of where the fluids and gasesare in the system. We are regularly downloading high resolution, high speedimages and plotting them right alongside of our analysis on the ground andseeing new things there, too. The 24/7 collection is exhausting, but we know wecan do it!


In the image above, single and multi-bubble migration and phaseseparation are driven passively by specific control of container shape. A taper ina polygonal sectioned conduit leads to capillary pumping of liquid from rightto left driving bubble left to right. Such mechanisms may be invoked by fluidsystems aboard spacecraft to separate and store fluids by phase without movingparts.
(Image Credit:
Scott Kelly and Cady Colemen)

On the ground, the joint German-US team started with 24/7 operationsto learn the experiment in the first 2 to 3 weeks. Then the team travelled toGermany and slowed the pace, learned the system, then ramped up again to 24/7operations. [Development and ground operations for CCF take place at the GermanAerospace Center, headquartered in Cologne, Germany.] Our operations are muchmore controlled than before, because we were working 16-hour days to supportthat. The team then continued running for a few weeks until we finished ourfirst set of objectives.

Unexpected developments are part of the joy in microgravityinvestigations. When you make a discovery, you think, “Oh my, of course thisshould happen!” But no one has seen it before, because no one has had this nicelow-g environment for such a long duration. This is fun because it kindles the samekind of excitement that you have in your lab when you are definitelydiscovering something. It’s very exciting!

The thing is that the chances for discovery are much higherwith long-duration investigations on the space station. This is because we do notlive in that environment. You may be trying to verify a theory—and that isgreat—but en route you are very likely to see things to compliment orsupplement your investigation and even take you in different directions. Youwon’t have thought of these discoveries until you actually see them. That’swhat it is like with fluids in microgravity, as well as with combustion, materialsscience, and other fields.

One thing I feel very good about is that most of myinvestigation results can apply in the real world right away. Our work hasalready led to design concepts to improve the performance and reliability ofadvanced systems, such as condensing heat exchangers and waste-water treatmentdevices. It can also help with liquid fuel tank and fuel transfer designs. Theresults give new insight, confirm theories, and are useful for space and groundresearch. So there is not always a long lead time between the science productsand their use. This generates a good feeling, seeing that there is contributionin an observable timescale. This is not common in science and usually takesdecades to realize. Instead, these results can improve design and space systemdesign right now.

Dr. Mark Weislogel isa professor in the Thermal and Fluid Sciences Group in the Maseeh College ofEngineering and Computer Science at Portland State University. He has researchexperience from government and private institutions. While employed by NASA, heproposed and conducted experiments relating to microgravity fluid mechanics.This unique subtopic area within fluid mechanics provides significantchallenges for designers of fluids management systems for aerospaceapplications. Weislogel continues to make extensive use of NASA ground-basedlow-gravity facilities and has completed experiments via space shuttle, theRussian Mir Space Station, and the International Space Station. While in theprivate sector, Weislogel served as principal investigator for applied researchprojects concerning high-performance heat transport systems,micrometeorite-safe space-based radiators, microscale cooling systems,emergency oxygen supply systems, and astronaut sleep stations. His current researchincludes passive non-capillary cooling cycles for satellite thermal control andcapillary fluidics at both micro- and macro length scales. Weislogel has writtenover 50 publications; see http://web.cecs.pdx.edu/~mmw/for further details.



ISS Research in the Decade Ahead

International Space Station astronaut Suni Williams recently addressed a symposium at the AAAS (American Association for the Advancement of Science) annual meeting regarding research in extreme environments. In this entry for A Lab Aloft, she shares her perspective on extreme research on the International Space Station.

The upcoming decade of utilization is an exciting time for the International Space Station. As an astronaut, I had the opportunity to help build the station, to live and work on it, and I hope to go back someday. I think many people are unaware of the different aspects of this incredible laboratory: the various control centers; the communications that are involved just to prepare, make, and operate the station; as well as the different countries involved. Just providing operations for the station requires a tremendous amount of communication and control. And for the last 10 years, the station has also been furthering science.

There are fascinating opportunities for scientists with the space station going forward. An awareness of this can spur on ideas of ways to do investigations in space. Just looking at the science that has already been done during the last decade of assembly is inspirational. Think about it; when building projects are being erected, they do not usually operate at the same time. Take a hospital, for instance—it does not take patients while under construction. When you sit back and look at how much research was done while the station was under construction, it is pretty amazing.


Astronaut Sunita L. Williams, Expedition 15 flight engineer, performs one of
multiple tests of the Capillary Flow Experiment (CFE) investigation in the
Destiny laboratory of the International Space Station. CFE observes the flow
of fluid, in particular capillary phenomena, in microgravity.
(NASA Image ISS015E05039)

Compared to other laboratories, being in such a harsh environment adds some unique challenges. It also requires a lot to take care of it. When a toilet brakes, when the oxygen generation system does not work, when a solar array does not supply power, the crew are the only six people who can and have to go out and fix things. Control systems have to be maintained and this reduces the amount of science we can get done, compared to six people in a friendly environment here on Earth.

One of the main differences between the space station and other laboratories is that most labs work on only one experiment discipline, perhaps with variables. On the station, however, you really have to multitask; there are so many different investigations that people have wanted to do for a long time: biology and biotechnology, Earth and space sciences, education, human research, physical sciences, and technology. In a given day you could be doing experiments in all of these fields, which is different from other labs.

When interfacing with primary investigators on the ground, they are the scientists and I am somewhat of a tech operator while on the station. Astronauts are the hands-on connection, and there are good and bad parts to that. Sometimes we may need coaching from the investigator, but in exchange we bring an untainted perspective. We know what to look for from training, but we may notice some phenomenon that raises questions. This interaction is known as the human in the loop and it is really necessary. For instance, I was able to make unexpected observations for the Capillary Flow Experiment during my time on the space station. It was exciting to help scientists make new discoveries! There are some experiments we can automate 24/7, but others we don’t really know if we will find something without a critical eye observation.


Astronaut Sunita L. Williams, Expedition 15 flight
engineer, works at a portable glovebox facility in the
Destiny laboratory of the International Space Station.
(NASA Image ISS015E08308)

Now that I have returned from my work on the station, I am amazed to see the results coming out. For instance, there has been some exciting progress in vaccine development and even an approach to delivering a chemotherapy drug, due to space station investigations. This research is targeted to benefit people all over the world.

We all have to be a little bit patient, however, in waiting for such findings. For instance, I flew in 2006 and it is now 2011 and we are just now starting to see these positive results. What is encouraging now is that since science experiments have been going on, they are building upon themselves and yielding results. Follow-up experiments will continue to further investigate the problems and seek answers. I think getting concrete results is the most rewarding part of working on the space station and now is the time that we should start seeing it more frequently as science experiments get done.

We have a decade to use this lab, and it is time to start investing in the work. We are going to have humans in space for the next 10 years living and working on the station. The research and technology testing will provide us enough data and information for us to smartly build the next spacecraft to take us a little bit further. We need to find out things about the human body, the atmosphere, the spacecraft and how it is surviving. We are investigating things that happen in low earth orbit, and this gives us the confidence for humans to go one step farther. So I hope this is the stepping stone and inspiration for the next generation of explorers. We have to go someplace else.

Suni Williams is a NASA astronaut with and flight engineer for the International Space Station. She launched to the station on STS-116 (December 22, 2006) as part of Expedition 14 and Expedition 15, returning to Earth with STS-117 (June 22, 2007). During her increment in space, Williams set a new record for females of 195 days in space. In today’s blog, Williams shares her thoughts and perspective as a crewmember aboard the International Space Station with the readers of A Lab Aloft.



Research to Watch on the STS-133 Shuttle Launch to the International Space Station

The STS-133 shuttle flight, which launched to the International Space Station on February 24, 2011, includes 5 investigations for crewmembers to perform, delivery of 24 studies with hardware or samples, and 22 investigations with samples or data coming home on the return trip. Allow me to share with you a few of the highlights from this extensive list.

A major milestone from this flight is the final outfitting of the interior of the space station laboratory. NASA launched the last of the Express Racks on STS-133. These workhorses are bench-like structures used to support experiment equipment with power, data, and thermal sensors. The final addition of Express Rack 8 completes the furnishing of the laboratory, making way for full use of the station for research. Future National Lab users will employ about 50 percent of the space available in these racks, doing research that will benefit discovery and economic development of the nation through 2020 and beyond.

Cytokines on a Mission

This flight also includes a unique experiment that will study the very puzzling effects of spaceflight on the immune system. The Effect of Space Flight on Innate Immunity to Respiratory Viral Infections investigation looks at the impact of microgravity on the immune system by challenging it with respiratory syncytial virus (RSV). These studies will help determine the biological significance of space flight-induced changes in immune responses, which astronauts experience in microgravity. NASA and the National Institutes of Health (NIH) are both interested in using the space station to understand the immune system for astronauts and for the health of people here on Earth.

Boiling without Buoyancy

The first premier boiling facility, the Boiling eXperiment Facility (BXF) also launched on STS-133. This equipment enables the study of boiling in space, paving the way for two new investigations to take place on station: Microheater Array Boiling Experiment (BXF-MABE) and Nucleate Pool Boiling Experiment (BXF-NPBX). The boiling process is really different in space, since the vapor phase of a boiling liquid does not rise via buoyancy. Spacecraft and Earth-based systems use boiling to efficiently remove large amounts of heat by generating vapor from liquid. For example, many power plants use this process to generate electricity. An upper limit, called the critical heat flux, exists where the heater is covered with so much vapor that liquid supply to the heater begins to decrease. The goal of BXF-MABE is to determine the critical heat flux during boiling in microgravity. This will facilitate the optimal design of cooling systems on Earth, as well as in space exploration vehicles.

 

Without buoyancy or convection, boiling fluids behave quite differently in space.
(Video courtesy of NASA)

 

The second experiment, BXF-NPBX, studies nucleate boiling, which is bubble growth from a heated surface and the subsequent detachment of the bubble to a cooler surrounding liquid. Bubbles in microgravity grow to different sizes than on Earth and can transfer energy through fluid flow. The BXF-NPBX investigation provides an understanding of the heat transfer and vapor removal processes that take place during nucleate boiling in microgravity. This knowledge is necessary for optimum design and safe operation of heat exchange equipment that uses nucleate boiling as a way to transfer heat in extreme environments, like the deep ocean for submarines and microgravity for spacecraft.

All Fired Up

Also on this flight are some great new combustion experiments. Burning and Suppression of Solids (BASS) tests the hypothesis that materials in microgravity burn as well, if not better than, the same material in normal gravity, all other conditions being identical. Structure and Liftoff In Combustion Experiment (SLICE) investigates the characteristics of flame structure, such as length and lift, using different fuels with varied levels of dilution. SLICE uses a small flow duct with an igniter and nozzle to collect data as a flame detaches from the nozzle and stabilizes at a downstream position. Combustion is dramatically different in space, as seen in the photo below. These studies aim to make spacecraft safer from fires and combustion processes more efficient in microgravity.

 

A flame in Earth’s gravity (left) vs. microgravity (right).
On Earth, warm air rises and cools, leading to the shape of
the orange flame. In space, there is no buoyancy, so the
flame is blue-hot and spherical.
(Image courtesy of NASA)

 

Not So Lost In Space

One of the more publicized technology demonstrations on STS-133 is a humanoid robot that seems like something right out of a sci-fi movie. Robonaut serves as a springboard to help evolve new robotic capabilities in space. Over the next few years, tests of this technology on the space station will demonstrate that a dexterous robot can launch and operate in a space vehicle, manipulate mechanisms in a microgravity environment, function for extended duration within the space environment, assist with tasks, and eventually interact with the crewmembers.

 

The current Robonaut iteration: Robonaut 2.
(Image courtesy of NASA)

 

I am eager to see the results from the various studies beginning, ongoing, and returning from the space station via STS-133. This is an exciting time of full utilization of our laboratory in low Earth orbit!

For a full list of experiments available on this flight, see the STS-133 Press kit or visit https://www.nasa.gov. 

 

Julie A. Robinson, Ph.D.
International Space Station Program Scientist

At the Edge of the Valley of Death

Over the past few years, scientists have identified majorchallenges in moving from research discoveries in biomedicine, to actualproducts that improve human health. This gap is called the “valley of death.” Thisterm derives from the perilous divide between research discoveries and medicaltreatments that become available to the general public. On one side of thevalley you find a new research result with important implications, on the otherside of the chasm stands a potential product capable of bettering or even savinghuman lives. In between these two milestones are numerous barriers that cankeep the knowledge from reaching its full potential for humanity.

The redefined discipline of translational medicine seeksto improve the rate at which discoveries actually make it into the marketplaceor from “bench to bedside,” as seen in Traversing theValley of Death: A Guide to Assessing Prospects for Translational Success.The valley of death is so strewn with institutional and marketplace barriers,that experts believe we need to make changes in the support structure fortranslational research. By doing so, they hope that society will actuallyreceive the benefits of science investments. Nature published a news feature on this topic in 2008, titled TranslationalResearch: Crossing the Valley of Death.

These challenges for Earthbound researchers also apply tothe biomedical research conducted on the International Space Station. Even themost compelling research findings on the space station have a long path aheadbefore that knowledge will have the opportunity to yield results—they, too, musttraverse the valley of death.

Today, I want to share the status of three early researchfindings that you may have heard about. The results from these stationinvestigations are just now starting to make their way across the chasm. Thejourney for these results may take as long as two decades to complete, if theyare successful.

SalmonellaVaccine Development:

Spaceflight causes increased pathogenicityin Salmonella bacteria, which is aknown cause of food poisoning. Investigators used space pathogenicity ofsalmonella infecting a model nematode (a type of worm used in research) as ascreening model to evaluate candidate vaccines. The resulting data are leading tothe development of a Food and Drug Administration application for aninvestigational new drug by Astrogenetix, Inc. A similar approach, usingmethicillin-resistant Staphylococcusaureus (MRSA), is also ongoing. Multiple research groups are nowinvestigating mechanisms of virulence in other species of bacteria. Theprogress of this research depends on the future success of several stages ofclinical trials, and the willingness of a pharmaceutical company to bring thevaccine to market. Given the global impact of food poisoning, the market islarge. Even so, it will still depend on a pharmaceutical partner presenting acompelling business case for completing the development.


Eight syringe mechanisms filled with biological constituents
and loaded in a Group Activation Pack are used to test
bacterial pathogens for virulence and therapeutic potential.
(Image courtesy of BioServe Space Technologies)

Microencapsulationof Prostate Cancer Treatment Drugs:

Microcapsules—micro-scale capsules surrounding aninjected medication to help it target a specific area of the body—were producedon the space station in 2002. The properties of the space-producedmicrocapsules were predicted to be more effective in treating prostate cancer;this was shown in ground models. In 2009, researchers were finally able todevelop and patent a machine capable of producing quantities of similar microcapsuleson the ground. NuVue Technology is now trying to raise the money necessary tofund the FDA-approved clinical trials at M.D. Anderson Cancer Center in Houston, TX,and the Mayo Cancer Clinic in Scottsdale, AZ. For obvious reasons, 2010 was notthe best year for raising investor capital for new clinical trials. Globaleconomic struggles and funding hurdles are just a few of many examples of thebarriers to bridging the valley of death.


Micro-balloons containing antitumor drugs
and radio-contrast oil produced in
Microencapsulation Electrostatic Processing
System during International Space Station
Expedition 5.
(Image courtesy of D.R. Morrison)

A NewTreatment For Duchenne’s Muscular Dystrophy:

Protein crystal growth on the space station allowed for theidentification of an improved structure of human hematopoietic prostaglandin D2synthase (HQL-79). The conditions in microgravity allowed for the developmentof a slightly better crystal than previously possible on the ground. Thisimproved model provided investigators with new information on the structure ofthe enzyme. This protein inhibits an enzyme that is more active in patientswith Duchenne’s muscular dystrophy. Based on this knowledge, investigatorsdeveloped a new candidate treatment. It is now undergoing testing via animalmodels, with dramatic early success. This common and debilitating form ofmuscular dystrophy affects approximately 1 in 4,000 males, so the potentialbenefit and market are great. Barriers that could affect the eventualtranslation of the treatment to marketplace, however, include the possibility ofan ineffective candidate drug in clinical trials, despite the successful animalmodel. Likewise, if the drug has unintended effects or if intellectual propertymakes the drug difficult to bring to market, the entire project could tumbleinto the valley.


Crystals of human hematopoietic prostaglandin D
synthase (H-PGDS) grown under terrestrial (a) and
microgravity (b) conditions. In the microgravity
experiment, plate-like crystals were grown with
good morphology. Scale bar corresponds to 100
μm.
(Image courtesy of Osaka Bioscience Institute)

In my role as Program Scientist, I talk frequently aboutthese examples. This is because the advent of their success will validate thediscovery potential of the space station as a laboratory. Critics be warned,however, that the converse is not true. If any or all of these examples do notmake it to market, this only indicates that our society has not built the mostreliable bridge across the valley of death. The National Institutes of Health,pharmaceutical companies, and universities continually seek better bridges sothat scientific discoveries translate more directly into saving human lives. Spacestation researchers join their Earthbound colleagues on this journey to spanthe chasm for the benefit of all humanity.

Julie A. Robinson, Ph.D.
International Space Station Program Scientist