What Kind of World Do You Want?

A LabAloft guest blogger Dylan Mathis, is the man behind the sensational “What Kindof World Do You Want” International Space Station YouTube video. Today heshares how this tribute to the Space Shuttle Program on behalf of the spacestation is his way of continuing the message of exploration to the world.

When people ask me why I put together the “World” video, I tell them it is amultimedia thank you on behalf of the International Space Station Program tothe Space Shuttle Program for building the station. Without this fleet ofamazing heavy-lift vehicles, it would not have been possible to launch andconstruct the various modules into the orbiting laboratory we have and usetoday.

I work at Johnson Space Center in Houston,Texas, as the Mass Communications Lead for the International Space StationProgram. This is an exciting career that allows me to use my imagination,talents and love of space together to create dynamic products, such as the“World” video, to promote NASA’s goals. I’m lucky to work on something I enjoyand believe in, which is part of why this video’s message struck such a chordwith me—and I suspect with the viewers, as well.


Screenshot from “World” video on NASA YouTubeshowing the International Space Station crew with the visual question: Whatkind of world do you want?
(NASA Image)

The concept for the “World” video sparkedwhen I was working with Expedition 25 Commander Doug Wheelock, or “Wheels”, on hispostflight video. He asked me to see about getting song rights from a bandcalled “Five for Fighting” to play along with his video. Typically that is nota simple process. I emailed Five for Fighting’s bandleader, John Ondrasik,explaining to him Wheels’ request. To my surprise, John replied 29 minuteslater, saying he would be honored to grant us the rights to use the music. Evidentlyhis dad had worked for NASA’s Jet Propulsion Laboratory in the 70’s and hehimself was a self-proclaimed big space nut.

When I heard the song “World,” I was struckby the inspirational lyrical content. I knew this music had the potential tomake a tremendous soundtrack for an outreach video. So, while we were workingon Wheels’ postflight video, we negotiated additional usage rights at the sametime. The final agreement allows for the use of this song for 10 years on NASA TV,NASAYouTube, NASA.gov and any official NASA event,including when astronauts and management speak to the public.


Screenshot from “World” video on NASA YouTubeshowing Expedition 23/24 Flight Engineer Tracy Caldwell Dyson enjoying the viewfrom the Window Observational Research Facility, or WORF, aboard theInternational Space Station.
(NASA Image)

In making this video, I timed the imagery ofboth the space shuttle and the space station with the lyrics to describe themas the masterpieces that they are. These two iconic achievements of theaerospace industry are intermixed with imagery of children on Earth andastronauts working and living in space. My hope is that as viewers listen andwatch the combination play out before them, they will think of space explorationwith excitement and awe.

There are also images of the Earth from thespace station and shuttle in the mix. I wanted to share a reminder of thebenefits of space to life on our planet by including an Earth views. Reachingfor the stars has yielded so many advances for current and future generationsand I want younger viewers to consider a future in science and engineering. Itis this very sense of wonder, which I tried to convey in the video, that drivesso many real achievements in space.

I was honored by the reception the videoreceived. In fact, there was an unanticipated spinoff from the production, asmy connection with “Five for Fighting” turned into an onsite tribute concert atJohnson Space Center to honor the Space Shuttle Program. The show took place onAugust 27, 2011 for an audience of NASA employees, contractors and theirfamilies as a “thank you” for their support.  

The key message that I heard from the lyrics in“World” is that history starts now. This video is an invitation to each viewerto take action and think about the question, “What kind of world do you want?” Whatcan each of us do today to make tomorrow that much better? I ended the videowith a reminder that even with the retirement of the space shuttle, theInternational Space Station will continue to operate and make remarkablediscoveries to benefit humanity until at least 2020 and perhaps beyond. We arejust getting started!


Screenshot from “World” video on NASA YouTubeshowing the planned operational duration of 2020 for the International SpaceStation.
(NASA Image)

DylanMathis is currently the Mass Communications Lead in the International SpaceStation Program Office of External Integration. He earned an undergraduatedegree in Radio, Television, and Film and a Masters degree in High DefinitionTelevision and Digital Media from Baylor University. Dylan has worked at NASAin the International Space Station Program over 11 years.

The Power to Inspire: The Effectiveness of International Space Station Education Projects

This week guest blogger Camille Alleyne,International Space Station assistant program scientist, shares her experiencesin station educational outreach with the readers of A Lab Aloft.

As I go through my busy workday, absorbed in the detailsof my part to help support the International Space Station Program ScienceOffice, I rarely stop to think about the impact the work that my colleagues andI do has on the general populace. That was until last week, when I got toexperience first-hand the power of our educational programs to inspire generations.I was invited to participate in the 10thannual Caribbean Youth Science Forum that was held in Trinidad and Tobago,my birth country. This event brought together over 300 high school seniors from6 Caribbean countries who were interested in pursuing careers in science,engineering and technology.


Participants in theCaribbean Youth Science Forum with Camille Alleyne, second right (back row).
(Image courtesy of Trinidad ExpressNewspapers/Ishmael Salandy)


Given my position within NASA, I was invited to the forumand asked to do an interactive workshop with these students on a space-relatedtopic. Suspecting that these students had very rarely, if at all, thoughtseriously about space exploration, I wanted to create an experience for them.My goal was to not only expand their minds, but motivate and inspire them tobelieve in themselves and to dare to dream big.

That is exactly what happened when the forum’s studentshad the opportunity to participate in the International Space Station Ham Radio,or ISSHam Radio, project. This investigation, which uses ham radio technology, allowedstudents to make real-time contact with the crew members aboard the spacestation for a question and answer session. The ham radio communication was anhistoric event for the Caribbean region and one that fulfilled my education objective.ISS Ham Radio is a space station educational program with a global reach, givingstudents from all over the world an ability to talk to astronauts andcosmonauts as they work and live in space.

The scene during the ham radio communication included anauditorium filled with students abuzz with excitement as they waited for theactual contact to begin. The space station, on a trajectory towards SouthAmerica, was viewed on a giant screen that projected the world map and track ofthe station to help students visualize the orbiting laboratory’s location. Directcontact while the station was over Trinidad and Tobago was not possible, as thecrew would have been in their sleep period during direct flyover, so atelebridge connection was constructed. In other words, the call was scheduledto take place while the station was overhead of and able to obtain a directlink with another location—in this case, Argentina. Once established, theconnection was relayed to the Caribbean via an Argentinean ground station.

The event and contact were moderated by Steve McFarlene, amentor and radio operator based out of Canada. The Canadian team connected withthe Argentinean team over regular telephone lines in preparation for the groundstation to make the contact to the ham radio aboard the space station.

Twenty minutes before the contact, as the station enteredthe path that makes the contact possible, McFarlene gave an introduction andwelcomed the students of the region to the historic event of the first evercontact from space to the Caribbean. He asked the first student to do a test toensure a loud and clear communication. After the test, the local organizers ofevent had an opportunity to introduce themselves and the schools and studentsrepresented there. McFarlene then prompted the team from Argentina to introducethemselves. The growing excitement was palatable in the auditorium! 

At precisely 11:13 EDT, McFarlene gave the go-ahead tostart the event. Organizers queued up the 12 students chosen to read theirquestions to the space station crew and then a voice came over the speakersaying “testing, testing.” It was the voice of Satoshi Furukawa, the JAXA crew memberaboard the space station—my heart skipped a beat. We had made contact! 


Students asking Satoshi Furukawa their questions. Fromleft to right: Jonathan Gosyne, Presentation College Chaguanas; Adam Hanna,Queen’s Royal College; Oliver Maynard, TA Marryshow College, Grenada; andMichael Green, Deputy Director of Operations, TTARL.
(Credit: DesireeSampson/NIHERST)

The room was awed silence as the first student asked hisquestion: “Hi, I am Carlos. Howis the ISS powered and how does the station use its power source to maintainorbit? Over!” Satoshi responded and then the next student asked their question.Before an answer was communicated, something unexpected happened—the connectionwent dead! There was a gasp in the room and McFarlene announced that we had lost the connection. Thankfully,about 60 seconds later, we heard Satoshi’s voice again as contact was restored.

The rest of the eventwent flawlessly and all 12 students received answers to their well thought-outquestions. At 11:23 EDT, the connection dropped as the station continued on itspath out of the range for Argentinean communication. The room erupted in applauseas this historic contact successfully completed.

As the forumcontinued over the next few days, news of the event captivated the populace asit was broadcast across the region’s airwaves. During the course of the week, Ialso had an opportunity to meet with students to talk about their dreams of careersin engineering and science. Student after student told me how inspirationalthose moments were when we made contact with the station crew. A boy namedSharaz, who happened to be one of the 12 lucky students who spoke with thestation astronaut, expressed to me that being a part of the event was the bestmoment of his life; a moment he will never forget! Other students communicatedthat they knew anything was possible for their lives now, because of thisexperience.

It can be a challengehere in International Space Station Program Science Office to measure theeffectiveness of programs that we implement. As we work with educators to designactivities, our goal is to motivate the next generation of scientists, thinkers,innovators and explorers. What I found, based on my experience with theCaribbean ham radio contact, is that our work is not only meeting objectives, inspiringfor generations to come! 


Camille Alleyne
(
Credit: Jackie Hicks)

Camille Alleyne is an Assistant ProgramScientist for the International Space Station Program Science Office with NASA’sJohnson Space Center where she is responsible for leading the areas of communicationsand education. Prior to this, she served as the Deputy Manager for the OrionCrew and Service Module Test and Verification program.  She holds a Bachelor of Science degree inMechanical Engineering from Howard University, a Master of Science degree inMechanical Engineering (Composite Materials) from Florida A&M Universityand a Master of Science degree in Aerospace Engineering (Hypersonics) fromUniversity of Maryland. She is currently working on her Doctorate in ScienceEducation at the University of Houston.

Sharing the Love

This week on A Lab Aloft, comments from guest blogger Justin Kugler, Systems Engineer with the National Laboratory Office, as he recalls his experience at the STS-135 Tweetup at Kennedy Space Center, Fla.

Our mission in the International Space Station National Laboratory Office is to make the unique capabilities of the station more open to other government agencies, industry partners, and education programs. Fulfilling that mandate from Congress has introduced me to a wide variety of researchers, technologists, engineers, entrepreneurs, and educators. I have every expectation that the National Lab portfolio will only grow more eclectic with time.

As the admin for the National Lab Office Twitter account, @ISS_NatLab, it was exciting to move out from behind the keyboard and take the stage at the STS-135 Launch Tweetup at Kennedy Space Center, Fla. on July 7, 2011. Presenting alongside me was scientist Tracy Thumm with the International Space Station Program Scientist’s Office. This is a great example of how NASA has embraced the power of social media to connect with the public and share our stories.

Tracy Thumm and Justin Kugler
speak at the STS-135 NASA
Tweetup (NASA image)

Back home, our colleges with @ISS_Research supported the Tweetup and posted updates for our followers on Twitter. Tracy and I spoke about the science, technology, and exploration research planned for the final mission of the Space Shuttle Program and aboard the space station. In addition to the physical group of 150 of NASA’s biggest fans, we had countless virtual participants through the live video stream and online forums.

Some of the topics we covered for STS-135 included advanced vaccine research and the J. Craig Venter Institute’s bacteriological survey of the station environment. I also had the privilege of presenting some of the new technologies that will be broken in on the station in preparation for future deep space exploration, such as new carbon dioxide scrubbers, non-toxic propellants, inflatable modules, and advanced telerobotics. 

I really enjoyed the Q&A session that followed my talk, as it allowed us to answer in greater detail how research opportunities are expanding on the station. For example, I shared a training module from a commercial partner, NanoRacks, LLC. This 10-cm cubed platform, with USB port for power and data, houses and integrates small experiments aboard the station. Using ready-made platforms like this enables researchers with a good idea, but relatively little funding to obtain sustained exposure to the microgravity environment. We also talked about the planned use of commercial lab equipment—such as a plate reader—modified for the station that will allow NASA to send data back to researchers on the ground without having to return samples. This reduces the time lag to get results.

My colleague Tracy fielded a question regarding the length of time till scientist see results from station research. In fact, we are already seeing results, such as a recently published study on the stability of pharmaceuticals in space. The International Space Station Research and Technology Website keeps tabs on the results, as they become available to the public. The actual duration for results varies from investigation to investigation.

One of my favorite questions, though, was about what we still need to learn to send humans on long-duration missions and where people can learn more. There are, relatively speaking, only a handful of data points for how the human body behaves in the space environment and billions of data points here on Earth. We understand very little of what happens in between, such as with the one-third-normal gravity of Mars. Future human research studies on the station will help us fill in those gaps so we can design vehicles and missions to keep human explorers healthy, safe, and sane on their journeys. NASA’s Human Research Roadmap covers this in much greater detail.

Later, I was told that the tent was quiet—except for the background hum of the portable air conditioners—because everyone was listening intently, taking notes for their blogs or posting our answers in real-time to Twitter. Attendees continued to come up to Tracy and I to ask questions about the work being done on the station throughout the rest of the event.

The Tweetup also included a special visit from Deputy Administrator Lori Garver and an entertaining interview between astronauts Mike Massimino and Doug Wheelock and Sesame Street star, Elmo. The Muppet, interestingly enough, had as many questions as the astronauts! 

Sesame Street’s Elmo interviews
astronauts Mike Massimino and
Doug Wheelock at the STS-135
NASA Tweetup.
(NASA Image)

After the rains of that Thursday passed, the attendees all made their way out to the lawn near Pad 39A to visit the shuttle Atlantis. The crowd was electrified by the breathtaking unveiling of the orbiter, as the rotating service structure retracted from view to clear the pad for launch. Despite the amorphous grey clouds in the background, the stark contrast between the orange external tank, black and white thermal tiles on the orbiter, and the white cylinders of the boosters was truly riveting.

The rotating service structure
retracting from Atlantis
(Image courtesy of Justin Kugler)

Surprises were in store for the Tweetup participants throughout the morning of launch day. This included a visit from astronaut legend, Bob Crippen, and the introduction of Bear McCreary’s “Fanfare” for STS-135 by Seth Green (an unabashed NASA enthusiast). As the hours rolled by, the anticipation was at a fever pitch. The weather was progressively improving and everyone had a sense that the launch would actually happen.

The passing of the Astrovan further raised the level of anticipation. We had our first indication that the “final four” were close from the passing of the escort helicopter. A spontaneous cheer went up when the van and its security entourage turned the corner and came into view. There was one last stop to let off anyone not going to the pad, then the crew of Atlantis pressed on to their destination and a beautiful launch!

One last stop for the Astrovan.
(Image courtesy of Justin Kugler)

After Atlantis’ ascent, people made their way back to their laptops in the Tweetup tent or established a connection with their smartphone, the blog posts, Tweets, and picture uploads resumed en masse. Each of the Tweetup attendees became an ambassador to the rest of the world for NASA.

That relationship is what NASA Tweetups are all about. Even in the twilight of the Space Shuttle Program, the love and passion for spaceflight was alive and well in us all. I believe it is the responsibility of those who experienced the final shuttle launch—NASA employees and honored guests alike—to share this connection with the rest of the world and to look forward to the next decade of research on the space station.

The Tweetups are successful because they embody more than just telling people about what we do at NASA. Attendees have the chance to participate and share the story on their own terms. It is this bond between NASA and the public that can sustain interest in and support for our nation’s space program and future exploration. We still have a lot of work to do on the space station and to prepare for missions in deep space, so I look forward to many more Tweetups to come.

The STS-135 Launch Tweetup participants.
(NASA image)

Justin Kugler works at NASA Johnson Space Center in the International Space Station National Laboratory Office. There he supports systems integration activities for science payloads. He has a B.S. in Aerospace Engineering from Texas A&M University and a M.S. in Mechanical Engineering from Rice University.

 

Why the International Space Station? Technology Demonstration

Thisweek, comments from guest blogger Brian Rishikof, Vice President of InnovativeSpace Propulsion Systems, LLC, as he comments on the International SpaceStation as a unique test bed for the aerospace industry.

New technology requires rigorous testing prior to productionand deployment, and this is especially true for the aerospace industry. Whendeveloping for space, however, you have a unique set of requirements that canlimit your testing platform options. This is why the International SpaceStation is such an asset for industry growth and progress.

Innovative Space Propulsion Systems, LLC, for instance, isworking on high-performance, non-toxic (or “green”) monopropellant replacementsfor in-space chemical propulsion systems, called NOFBX®. Using a simple, feedsystem and lightweight engines capable of deep throttling and operation fromany fluid phase, we hope to revolutionize spaceflight and associated groundoperations with radically improved safety, minimal pollutants and reducedcosts.

While there will be significant testing on the ground,flight testing is necessary to truly achieve full requirements verification for—andcustomer confidence in—the NOFBX® system. Ground testing allows us tocharacterize the system and resolve all issues for safe demonstration on thespace station, getting us to technology readiness levels of 6 to 7 (on a scaleof 1 to 10). This range represents the development to demonstration phases ofthe product in analogous environments. A flight experiment, however, canachieve a readiness level of 8 to 9, which seeks to demonstrate actual operationsin the intended environment. From a corporate and commercial perspective, thisis essential.


Theimage above is a Computer Aided Design representation of baseline NOFBX flight experiment pallet.
(Courtesy of Brian Rishikof)

Although the behavior and performance of a productundergoing testing can be well characterized on the ground, certain conditionsrequired for our test objectives cannot be replicated. For example, long-termexposure to the space environment, thermal cycling, microgravity, etc. cannotbe fully simulated on the ground. They are only achievable on platforms such asspace station or, to some extent, with suborbital flights. Our company wants tocharacterize how the system behaves and performs over time by running selectedtests after long quiescent/dormant periods when the system is completelyunpowered, however, which obviates the effectiveness of suborbital testingplatforms.

The space station also has many unique advantages as a testbed. It is already equipped with well-defined services for all the necessaryresources: power, data, mechanical, and analytical needs. It is, after all,designed to function as a laboratory. These resources reduce the complexity,technical risk, and total cost for users performing tests and investigations. Thespace station also supports video download, permits testing over an extendedperiod, and provides generous mass/volume/power capabilities. This allows forrapid design and flight of a human spaceflight safety-compliant system that willaddress thruster characterization, propellant transfer, and extended operationsobjectives in a single payload.


Above is an image of the prototype thrust
chamber and nozzle.
(Courtesy of Brian Rishikof)

Given the criticality of flight heritage in developing and commercializingthis technology, the station offers the shortest conceivable time-to-flight(~18 months), as well. In other words, the maturity and availability of thestation, and opportunities for transportation to the station, allows us topursue an aggressive schedule for in-space testing and demonstration, which inturn allows us to get to a marketable product sooner.

Employing ISS as a test platform accelerates the scheduleand significantly improves the business case (and U.S. competitiveness),because it allows timely consideration within the commercial crew developmentarena. This is of particular interest to my company as other “green”monopropulsion systems, some of which have already flown, are penetrating thecustomer market. Based on our review, the performance and other attributes ofour propellant and propulsion systems offer significant advantages.Demonstrating a superior alternative as quickly as possible will facilitatemarket penetration and accelerate U.S. competitiveness and achieve leadershipboth domestically and internationally. This will also accelerate theavailability of the cost and safety benefits to the U.S. government andgovernment suppliers.

Safety considerations also benefit from space stationtesting. The space station-based flight test positively enforces compliancewith all the safety requirements associated with operation of the propulsionsystem at, or in the vicinity of, the space station. There currently is noexisting established standard for bringing a new aerospace propulsion systeminto manned spaceflight applications. The space station safety review process isthe closest standard for acceptance testing a new system for human spaceflight.

It has become clear in my discussions with many potentialcustomers and users that the actual flight test in space changes perspectives. Provenflight heritage transforms casual interest into true consideration for missionapplications, such as commercial crew and cargo delivery to the space station.I constantly get asked, “Has it flown, yet?” or, “When will it fly?” Part ofthis customer interest derives from engagement with the NASA space stationteam, which provides access to independent expertise, processes, equipment andexperience. This adds significantly to the rigor of our combined work, and the necessaryconfidence that the end product is ready to be safely used at the space station,and by other customers for other applications.

Business operates on a global level, and the space stationprovides an unprecedented opportunity for domestic and international exposure.The station platform receives significantly more attention than other spaceassets, therefore enabling awareness and knowledge of the technology across amuch broader segment of the U.S. government and commercial industries. Inaddition, the international nature of the space station can generate interestfrom the international community and catalyze business opportunities and accessto new markets. This is not be possible on any other test platform, making thespace station a truly unique resource.

Brian Rishikof is VicePresident of Innovative Space Propulsion Systems, LLC and Program Manager forthe ISS-bound NOFBX Flight Demonstration Experiment. ISPS is chartered with advancingNOFBX® propulsion technologies and bringing them to the commercial andgovernment markets. Brian is also a founder and CEO of Odyssey Space Research,LLC, which specializes in Guidance, Navigation and Control, systemsengineering, software, analysis, and human spaceflight safety.

The Advantage of Laboratory Time in Space

This week, commentsfrom guest blogger and International Space Station Principal Investigator Dr.Mark Weislogel, as he reflects on the importance, advantages and joys oflong-duration investigations on the space station.

Scientists who have not used the International Space Stationbefore don’t always have a feel for how space experiments can be as successful,if not more so than those using other low-g environments. Researchers used tothe shuttle experience think in terms of a very small window of time to makechanges and adapt. Short duration investigations are intense and competitive.In hindsight, it seems they are high risk. If you have a three-hour slot to runyour experiment and some setback occurs that cannot be resolved, you lose aportion of your data.

On the space station this can also happen, but when youengage in long-duration investigations, you quickly realize that you have timeto think things over. Because of this, when unexpected events occur, you canrespond in a creative and curious way. The success factor of long-durationexperiments is high—barring any failures in equipment, a risk in any lab. Infact, you are very likely to discover things you would not anticipate; thingscompletely peripheral to the goal, which you will observe for the first time,due to man’s limited experience in microgravity.

When a setback occurs on the station, you get partialresults and then the investigation goes into storage or offline for a time.When you come back, you’ve had time to think about things. In my experiencewith the CapillaryFlow Experiment or CFE, the participating astronaut also had suggestions,an advantage to working with humans in space. Procedures were changed around fromthe previous run and we ended up with more data than ever planned and saw newthings en route. [Ground operations for the CFE investigation took place at theNational Center for Microgravity Research and Glenn Research Center, Cleveland,Ohio.]


NASA astronaut ScottKelly, Expedition 26 commander, works on the hardware setup for a CapillaryFlow Experiment (CFE) Vane Gap-1 experiment. The CFE is positioned on theMaintenance Work Area in the Destiny laboratory of the International SpaceStation. CFE observes the flow of fluid, in particular capillary phenomena, inmicrogravity.
(NASA Image ISS026E017024)

Transitions in fluid locations due to slight changes incontainer geometry. As a central vane is rotated in this elliptic cylindercontainer critical wetting geometries are established leading to wicking alongthe vane-wall gap, and/or a bulk shift of fluid from right to left.
(Image Credit: Suni Williams)

Time and resources factor into any discovery, of course, andsignificant astronautinvolvement makes a big difference, too; certainly more so than inautomated or robotic investigations. But even with the CapillaryChannel Flow or CCF investigation that I am working on right now, it is amazing! If you have a pump and some valves, you can configure them in many ways you did not anticipate and widen your data set. You want to get what you planned on, but it is a delight to get all this extra information that you never expected!

My previous experience dealt with handheld, smallexperiments, so to me CCF is a complicated investigation. CCF is focused ontwo-phase flow—a liquid system with gas bubbles. In space, the gas does notrise and we have not had many opportunities to study systems like this inmicrogravity. The investigation has pumps and valves and plungers andseparation chambers. While there are other studies devoted only to two-phaseflow, CCF has two-phase flow all throughout it just to generate the flow thatwe are interested in watching. CCF operates continuously, controlled from theground through the Microgravity Science Glovebox or MSG interface and does notrequire crew interaction.

We have gotten to the point with CCF where we can get around20 data points per day and we are on our way to where we can get hundreds andhundreds of data points in a 24/7 operation. The system is working, thoughthere are setbacks—often times with loss of signal during our commanding or dueto our own thing—in trying to take inventories of where the fluids and gasesare in the system. We are regularly downloading high resolution, high speedimages and plotting them right alongside of our analysis on the ground andseeing new things there, too. The 24/7 collection is exhausting, but we know wecan do it!


In the image above, single and multi-bubble migration and phaseseparation are driven passively by specific control of container shape. A taper ina polygonal sectioned conduit leads to capillary pumping of liquid from rightto left driving bubble left to right. Such mechanisms may be invoked by fluidsystems aboard spacecraft to separate and store fluids by phase without movingparts.
(Image Credit:
Scott Kelly and Cady Colemen)

On the ground, the joint German-US team started with 24/7 operationsto learn the experiment in the first 2 to 3 weeks. Then the team travelled toGermany and slowed the pace, learned the system, then ramped up again to 24/7operations. [Development and ground operations for CCF take place at the GermanAerospace Center, headquartered in Cologne, Germany.] Our operations are muchmore controlled than before, because we were working 16-hour days to supportthat. The team then continued running for a few weeks until we finished ourfirst set of objectives.

Unexpected developments are part of the joy in microgravityinvestigations. When you make a discovery, you think, “Oh my, of course thisshould happen!” But no one has seen it before, because no one has had this nicelow-g environment for such a long duration. This is fun because it kindles the samekind of excitement that you have in your lab when you are definitelydiscovering something. It’s very exciting!

The thing is that the chances for discovery are much higherwith long-duration investigations on the space station. This is because we do notlive in that environment. You may be trying to verify a theory—and that isgreat—but en route you are very likely to see things to compliment orsupplement your investigation and even take you in different directions. Youwon’t have thought of these discoveries until you actually see them. That’swhat it is like with fluids in microgravity, as well as with combustion, materialsscience, and other fields.

One thing I feel very good about is that most of myinvestigation results can apply in the real world right away. Our work hasalready led to design concepts to improve the performance and reliability ofadvanced systems, such as condensing heat exchangers and waste-water treatmentdevices. It can also help with liquid fuel tank and fuel transfer designs. Theresults give new insight, confirm theories, and are useful for space and groundresearch. So there is not always a long lead time between the science productsand their use. This generates a good feeling, seeing that there is contributionin an observable timescale. This is not common in science and usually takesdecades to realize. Instead, these results can improve design and space systemdesign right now.

Dr. Mark Weislogel isa professor in the Thermal and Fluid Sciences Group in the Maseeh College ofEngineering and Computer Science at Portland State University. He has researchexperience from government and private institutions. While employed by NASA, heproposed and conducted experiments relating to microgravity fluid mechanics.This unique subtopic area within fluid mechanics provides significantchallenges for designers of fluids management systems for aerospaceapplications. Weislogel continues to make extensive use of NASA ground-basedlow-gravity facilities and has completed experiments via space shuttle, theRussian Mir Space Station, and the International Space Station. While in theprivate sector, Weislogel served as principal investigator for applied researchprojects concerning high-performance heat transport systems,micrometeorite-safe space-based radiators, microscale cooling systems,emergency oxygen supply systems, and astronaut sleep stations. His current researchincludes passive non-capillary cooling cycles for satellite thermal control andcapillary fluidics at both micro- and macro length scales. Weislogel has writtenover 50 publications; see http://web.cecs.pdx.edu/~mmw/for further details.



Three Misconceptions about the International Space Station

This week on A Lab Aloft, International Space Station Program Science Office Research Communications Specialist Jessica Nimon shares answers to some of the more frequently asked questions she receives about the International Space Station.

Recently I attended two different public forums as a representative for the International Space Station Program Scientist’s Office. It was an exciting opportunity to share information about the station with the public and to get some feedback in return. The first event, Space Day on the Capitol in Austin, Texas, was a chance to speak with state legislators, visiting students and even tourists. A week later, I went to Colorado Springs for the National Space Symposium, which was more of a traditional conference setting for space businesses and enthusiasts.


Children and educators converge
at the State Capitol for inspiring
and informational activities.
(Credit: NASA)

My main objective at these events was to educate and answer questions regarding the research done on the space station. I anticipated a varied set of queries, but was surprised to find that when it came down to it, attendees at both events had similar misconceptions regarding the station. So in this blog, I hope to take a few moments of your time to correct the three most frequent misunderstandings regarding this amazing orbiting laboratory.

Misconception 1: The space station ends with the space shuttle

While the public seems well aware of the impending retirement of the space shuttle fleet, they are mixed in their understanding of what this means for the space station. Quite a few people asked me, “Does the space station retire with the shuttle?” In a word, no. The international partner agreements plan to continue to operate the space station through the year 2020. Now that we are finally at assembly complete, the entire International Space Station program is ready for full utilization for research and technology investigations!

While we may not arrive there via the space shuttle any longer, we continue to have crew travel capabilities with the Russian Soyuz. In fact, American astronauts have successfully and safely flown with the Russians on Soyuz for many years. American companies are also pursuing new crew vehicle options to offer transportation to the space station in the future. The question of upmass—the capability to lift large amounts of payload and supply weight—will continue to be addressed with international partner unmanned transport vehicles: JAXA HTV and ESA ATV, as well as two new American commercial resupply vehicles: Space X Dragon and Orbital Cygnus.

Misconception 2: Scientists do not need the space station

One of my favorite questions to pose to the student groups that would visit the NASA booth at the National Space Symposium was “what is the space station used for?” Sometimes a shy hand would raise and a boy or girl would offer that the station was built for research. More often than not, however, I was met with complete silence and a sea of blinking eyes. What an opportunity to educate these young minds on the fascinating purpose of the station!

Pointing to the scale model—which was to 1/100 the size of the space station, situated above a mini football field to illustrate the actual size—my colleagues and I took turns explaining. From the very beginning, the point of this unique facility was to perform experiments in the microgravity environment of low Earth orbit. It is interesting to note that investigations were conducted during the course of assembly, as well. Because the research did not have to wait for station completion, we are already seeing results from the early studies in space, which is remarkable!

Not only can scientists use the space station for short- and long-duration investigations, but they can also participate in the growing body of knowledge generated from their predecessors. Space station research has been published in prestigious science journals and continues to generate spinoff benefits. This information stands to serve people across the globe. When investigations yield results, they have the potential to cross all boundaries—gender, race, socioeconomic, etc. Reading this blog and the space station research and technology Web pages are a great way to keep up with emerging benefits.


The International Space Station length and width is about
the size of a football field.
(NASA Image)

Misconception 3: When the shuttle retires, there won’t be Americans in orbit

While I was at the National Space Symposium, there was a space station sighting opportunity for the Colorado Springs area. I shared this viewing prospect with visitors at the NASA exhibit. Some were amazed that they could go out onto their lawn, gaze at the sky, and see what appears to be a bright, fast-moving star and really be looking at an international orbiting laboratory. It was fun to remind people that while they stare up, the crew may be looking down, too.

This idea of humans in orbit provides the chance to share an important milestone reached in November of 2010—the space station now has a track record of over a decade of continued human presence in orbit! With the impending shuttle retirement, however, some fear that the days of Americans in space are numbered. Since crewmembers will fly via the Russian Soyuz, there is a misapprehension that only Russians will get to view back at Earth from the station in the future. The population of the space station, however, will remain as international as the collaboration that built it. Not only will we still have an American presence in space, but we will continue to have participants from all over the world. Currently we have two Americans, three Russians, and a European crewmember working in orbit.


NASA astronaut Catherine (Cady) Coleman and European Space Agency
astronaut Paolo Nespoli, both Expedition 26 flight engineers, use still cameras
at windows in the Zvezda Service Module of the International Space Station
during rendezvous and docking activities of space shuttle Discovery (STS-133).
(NASA Image ISS026-E-030172)

The international investment has already been made in the space station. Now is the time to not only continue use, but to ramp up our employment of this unique resource. Scientists have the upcoming decade to ask questions and send up investigations to make the most of the asset we have in this incredible laboratory.

Jessica Nimon worked in the aerospace industry as a technical writer for seven years before joining the International Space Station Program Science Office as the Research Communications Specialist. Jessica composes Web features, blog entries, and manages the @ISS_Research Twitter feed to share space station research and technology news with the public. She has a master’s degree in English from the University of Dallas.

 

ISS Research in the Decade Ahead

International Space Station astronaut Suni Williams recently addressed a symposium at the AAAS (American Association for the Advancement of Science) annual meeting regarding research in extreme environments. In this entry for A Lab Aloft, she shares her perspective on extreme research on the International Space Station.

The upcoming decade of utilization is an exciting time for the International Space Station. As an astronaut, I had the opportunity to help build the station, to live and work on it, and I hope to go back someday. I think many people are unaware of the different aspects of this incredible laboratory: the various control centers; the communications that are involved just to prepare, make, and operate the station; as well as the different countries involved. Just providing operations for the station requires a tremendous amount of communication and control. And for the last 10 years, the station has also been furthering science.

There are fascinating opportunities for scientists with the space station going forward. An awareness of this can spur on ideas of ways to do investigations in space. Just looking at the science that has already been done during the last decade of assembly is inspirational. Think about it; when building projects are being erected, they do not usually operate at the same time. Take a hospital, for instance—it does not take patients while under construction. When you sit back and look at how much research was done while the station was under construction, it is pretty amazing.


Astronaut Sunita L. Williams, Expedition 15 flight engineer, performs one of
multiple tests of the Capillary Flow Experiment (CFE) investigation in the
Destiny laboratory of the International Space Station. CFE observes the flow
of fluid, in particular capillary phenomena, in microgravity.
(NASA Image ISS015E05039)

Compared to other laboratories, being in such a harsh environment adds some unique challenges. It also requires a lot to take care of it. When a toilet brakes, when the oxygen generation system does not work, when a solar array does not supply power, the crew are the only six people who can and have to go out and fix things. Control systems have to be maintained and this reduces the amount of science we can get done, compared to six people in a friendly environment here on Earth.

One of the main differences between the space station and other laboratories is that most labs work on only one experiment discipline, perhaps with variables. On the station, however, you really have to multitask; there are so many different investigations that people have wanted to do for a long time: biology and biotechnology, Earth and space sciences, education, human research, physical sciences, and technology. In a given day you could be doing experiments in all of these fields, which is different from other labs.

When interfacing with primary investigators on the ground, they are the scientists and I am somewhat of a tech operator while on the station. Astronauts are the hands-on connection, and there are good and bad parts to that. Sometimes we may need coaching from the investigator, but in exchange we bring an untainted perspective. We know what to look for from training, but we may notice some phenomenon that raises questions. This interaction is known as the human in the loop and it is really necessary. For instance, I was able to make unexpected observations for the Capillary Flow Experiment during my time on the space station. It was exciting to help scientists make new discoveries! There are some experiments we can automate 24/7, but others we don’t really know if we will find something without a critical eye observation.


Astronaut Sunita L. Williams, Expedition 15 flight
engineer, works at a portable glovebox facility in the
Destiny laboratory of the International Space Station.
(NASA Image ISS015E08308)

Now that I have returned from my work on the station, I am amazed to see the results coming out. For instance, there has been some exciting progress in vaccine development and even an approach to delivering a chemotherapy drug, due to space station investigations. This research is targeted to benefit people all over the world.

We all have to be a little bit patient, however, in waiting for such findings. For instance, I flew in 2006 and it is now 2011 and we are just now starting to see these positive results. What is encouraging now is that since science experiments have been going on, they are building upon themselves and yielding results. Follow-up experiments will continue to further investigate the problems and seek answers. I think getting concrete results is the most rewarding part of working on the space station and now is the time that we should start seeing it more frequently as science experiments get done.

We have a decade to use this lab, and it is time to start investing in the work. We are going to have humans in space for the next 10 years living and working on the station. The research and technology testing will provide us enough data and information for us to smartly build the next spacecraft to take us a little bit further. We need to find out things about the human body, the atmosphere, the spacecraft and how it is surviving. We are investigating things that happen in low earth orbit, and this gives us the confidence for humans to go one step farther. So I hope this is the stepping stone and inspiration for the next generation of explorers. We have to go someplace else.

Suni Williams is a NASA astronaut with and flight engineer for the International Space Station. She launched to the station on STS-116 (December 22, 2006) as part of Expedition 14 and Expedition 15, returning to Earth with STS-117 (June 22, 2007). During her increment in space, Williams set a new record for females of 195 days in space. In today’s blog, Williams shares her thoughts and perspective as a crewmember aboard the International Space Station with the readers of A Lab Aloft.



Concept to Implementation in as Little as Six Months

Original Post March 02, 2011

This week, comments from guest blogger and International Space StationNational Laboratory Manager Marybeth Edeen, as she reflects on ways to helpresearchers reduce the time from concept to implementation for space stationexperiments.

Have you ever heard complaints about how long it takes tofly investigations in space? There has been a lot of discussion about how longit takes to get research from concept to implementation. Numerous people willtell you that it cannot be done in under 1 year or even as long as 5 years. Withrecent changes put in place with the National Laboratory Office, however, we havebeen successful in getting payloads from concept to implementation in as littleas 6 months.

The National Laboratory Office guides payload developers througha feasibility process to evaluate research ideas to determine how quickly thestation could accommodate a given payload. The first step is a triage meeting,where the research team and the payloads office experts discuss a concept todetermine the complexity of the research. Depending on the intricacy, we canguide the developers to use systems that are already in place, which cansignificantly speed up getting the research aboard the station. In many cases,we are able to slip the developer payload into a prepared research plan, using placeholderswe have prepared in advance. The research plan placeholders have certain capabilities(e.g., size, weight, etc.) set aside to reserve predefined spots for payloads.This way, when the time comes, we can determine which new payloads fit into theplaceholders.

Additionally, the Payloads Office has a “lean process,”which enables payloads to go through the integration process and be put onorbit ready for operations in as little as 6 to 7 months; from the time it wasidentified as available for launch. The National Laboratory Office sponsoredsome payloads that went into orbit in as little as 6 months, but that is notthe norm at this time. A developer is already in the assembly process on theirend for the payload, rather than in the development stage of their idea. Anamazing turnaround like this is for known re-flight science, not for newpayloads being assembled.

What we are trying to do with National Lab is to use theprocesses and manage the integration in such a way that we can bring things inlater than the normal flow. This is contingent on the National Laboratory modelof the commercial or government agency having their funding and developmentready to bring to the table. If they are waiting for anticipated funds to moveforward with development, this significantly delays the progress.


This image shows six seed wells inside of the NanoRacks-CubeLabs 6-plant
growth chamber, a student-designed investigation by Valley Christian High
School in San Jose, CA.
(Image courtesy of Werner Vavken)

One such developer who succeeded in an accelerated timelinewas the NanoRacks-CubeLabs team. The proposal for this commercially sponsoredpayload was submitted in July of 2009. A Space Act Agreement was signed inSeptember and by December of the same year, they had hardware delivered to the KSCfor launch. The developer team had already gone into the design work beforeapproaching NASA, but had not built the hardware at that point. They enteredhardware production in parallel with the integration process in order to getthe hardware certified for flight by December.

On our side, the National Laboratory Office is trying toshorten the templates and build flexibility into the process. We want to enabledevelopers to determine their final plan later in the process, when necessary.There are only so many payloads you can run through the process this way,however, to avoid delaying the details of the planning for everyone involved. Wehave to prepare our research plans 18 months in advance, so we look at this andsay: “hmm, there are three guys wanting this type of experiment, let’s toss in aplaceholder for that” or “this group has been talking to us frequently, hastheir funding lined up, and seems pretty serious.” We are trying to identifyand create spots for payloads that are likely to show up in 18 months ready togo. Rather than advertising these placeholders, we try to identify them andfill them according to the interest we see on the horizon. We take an educatedguess when creating these placeholders to prepare for our research ahead.

On the NationalLaboratory Web page, under Key Resources, payload developers can find theheading of Helpful Documents where our lean process documentation will post.We also posted the PayloadDevelopers and Principal Investigators Payload Planning, Integration andOperations Primer, so that researchers know what NASA needs from them atwhich times and why. This gives people an idea of what to bring to the tablebefore they talk to us, allowing them to move more swiftly through the process.This primer also cites changes for those using the lean process, to help savetime. More documents are continuing to post—some are still going through theapproval processes—so interested developers should continue to check back. Thislean process is new, so we are beta testing the documented process. Once we havebeen through it a few times, we can make changes and continue to improve it. 

The completion of ISS gives the crew a lot more time to workscience, so the faster we can get things up, the more science they can do. Also,there is more available upmass on the transport vehicles to transport resourcesfor experiments. It opens up more opportunities for our payload developers,especially if using existing hardware already on orbit. If you are interestedin doing research on station, give us a call. We are always open and lookingfor feedback in our processes to make them simpler and more user friendly forour researchers, so they can continue to get their results in a timely mannerand make great discoveries to benefit us all.

Marybeth Edeen is themanager of the ISS National Lab Office. She has a B.S. in Chemical Engineering from the University of Texas andan M.S. in Chemical Engineering from Rice University.  She has worked at NASA for 24 years. 


From Macro to Nano – A New Microscope on the International Space Station

Thisweek’s guest blogger, Dr. Peter Boul, shares some of the exciting facilitydevelopments for the International Space Station National Laboratory with thereaders of A Lab Aloft.

World-class research on the InternationalSpace Station would not be possible without a dedicated suite ofstate-of-the-art laboratory facilities and the project scientists that helpacademic researchers to use them. These are the resources that make experimentspossible and are invaluable to microgravity scientists.

The LightMicroscopy Module (LMM) is a case-in-point for a state-of-the-art facilityenabling high-impact scientific research. This module features a lightmicroscope capable of supplying images of samples on the space stationmagnified by up to 100 times their actual size. These images are digitallyprocessed and relayed back to Earth, where remote control of the microscoperesides. This allows flexible scheduling and control of physical science andbiological science experiments within the Fluids Integrated Rack or FIR on the spacestation. The present LMM will provide high-resolution images of samples andtheir evolution. In the near future, the LMM will produce 3-dimensional digitalimages, with the future addition of a confocal head for the microscope.


NASA astronaut T. J. Creamerperforming operations with the Constrained Vapor Bubble
or CVB investigation using the Light Microscopy Module.

(Image courtesy of NASA)

Dr. William Meyer, who works with scientistsaround the country to develop and complete their investigations using the LMM,recently gave a talk highlighting the microscope at the 2010 conference for theAmerican Institute for Aeronautics and Astronautics, known as AIAA. Accordingto Dr. Meyer, “the LMM is going to provide insights into many classes ofsamples because it provides a microscopic view of samples, which does notrequire theory to provide a bridge to understand what is going on [at themicro- and nanoscales].” 


This 3-Dimage displays some LMM-ACE confocal imaging goals.
(Image courtesy of Dr. Peter Lu, Harvard)

APowerful Lens to Microscale Phenomena in Microgravity

The LMM concept is a modifiedcommercial research imaging light microscope with powerful diagnostic hardwareand interfaces. It creates a cutting edge facility that enables microgravityresearch at a microscopic level.

There are a variety of differentphysics, biology, and engineering experiments already scheduled to use the LMM.One such experiment, the Constrained Vapor Bubble experiment orCVB, is a jointcollaboration between NASA and Peter C. Wayner, Jr., Ph.D. of Rensselaer Polytechnic Institute. CVBinvestigates heat conductance in microgravity as a function of liquid volumeand heat flow rate to determine the heat transport process characteristics in acurved liquid film. The data from this experiment may help scientists andengineers develop reliable temperature and environmental control systems forinterplanetary travel. The information from CVB may also lead to improveddesigns of systems for cooling critical components in microelectronic devices hereon Earth.

VisualizingMolecular Machines

The LMM can also facilitate studies innanotechnology and nanomaterials. Understanding and predicting the forcesbetween nanoscale particles is critical in the design of nanoscale materials. Thescience community is interested in learning more about the forces that regulatemolecular machines, which are crafted for integrationinto new materials and new medicines.

To this end, researchers such as Dr.David Weitz and Dr. Peter Lu with Harvard University, Dr. Paul Chaikin with NewYork University, Dr. Matthew Lynch with Proctor and Gamble, and Dr. Arjun Yodhwith the University of Pennsylvania, along with NASA Glenn Research Center areworking together to conduct a series of Advanced Colloids Experiments or ACE. This investigation looks at howorder arises out of disorder, colloidal engineering, self-assembly, and phaseseparation. Some of the early microgravity colloids work demonstrated used modelingatoms with hard-sphere colloids to understand this idea of order arising fromdisorder. The ACE experiments may give scientists a better description of themagnitudes of the forces that operate on the nanoscale and how to control them.The potential applications from this work are vast and may apply to such topicsas the design of molecular and biomolecular machines, nanoelectromechanicalsystems, and methods for enhancing the shelf-life of medicines and foods.

Using the LMM facility is just one wayin which an investigator can employ the station to pave a path to success in spaceresearch. Investigators now have a wide variety of instruments at theirdisposal on this orbiting laboratory. The outlook for the International SpaceStation National Laboratory is bright and ready to contribute to the next generationof great discoveries in science.

MoreFunding Opportunities

The LMM is a fixed facility on the space station and is available for use forlaboratory experiments. National Laboratory investigators can use this facilitythrough agencies, such as the National Institutes of Health, the NationalScience Foundation, and the Department of Energy. Researchers who wish to seetheir experiments on the space station can find out how to take advantage ofthe opportunity to use facilities, such as the LMM, by visiting the NationalLaboratory For Researchers Webpage. For specific questions, contact the help line at281-244-6187 or e-mail jsc-iss-payloads-helpline@mail.nasa.gov.

Dr. Peter Boul
NASA’s Johnson Space Center
International SpaceStation Program Science Office

Dr.Peter Boul is the Physical Science and External Facilities Specialist in the InternationalSpace Station Program Scientist’s Office. He is an author to numerous patentsand peer-reviewed publications in nanotechnology. Dr. Boul earned his Ph.D. inchemistry under the tutelage of 1996 Nobel Laureate, Prof. Richard E. Smalley.Following his doctoral studies, he was granted a 2-year postdoctoral fellowshipfrom the French government to work with 1987 Nobel Laureate, Prof. Jean-MarieLehn, in dynamic materials.

Tissue Engineering and the International Space Station

This week, comments from guest blogger,medical doctor, engineer, and astronaut, Dr. David Wolf, as he reflects on tissueengineering in space.

The InternationalSpace Station National Laboratory has an edge for doing unique experiments inmedicine and biotechnology that are not possible anywhere else—we can “turnoff” gravity. As we gear up to fully use the station, the emerging field oftissue engineering is one of our high-value targets. This is a particularlypromising area of study where microgravity research has already made advancesin basic science. Indications are that further work will lead to importantapplications in clinical medicine on Earth.

Building onthe groundwork from earlier programs, biotechnology research on the spacestation, and associated ground-based research in emulated microgravity, hascreated a large body of information. This data collection demonstrates thevalue of controlled gravity systems for assembling and growing 3-Dimensional livingtissue from individual cells and substrates. The NASA-developed Space Bioreactorprovides a core in-vitro capability both in space and on Earth.


Dr. Wolf, on SpaceStation Mir, repairing a faulty valve in the Space Bioreactor,
an instrument for precisely controlling the conditions enabling the culture of 3-D
human tissues in microgravity.
(NASA image)

On Earth,these bioreactors are unique in that they are able to emulate, within limits,the far superior fluid mechanical conditions achieved in space. One may thinkof this Space Bioreactor as a 3-D petri plate. The core of the instrumentationis a rotating fluid filled cylinder, the culture vessel, producing conditionsinside resembling the buoyancy found within the womb. And much like in thehuman body, this vessel is surrounded by a life support system performing thefunctions of the heart and lung, achieving the precisely controlled conditionsnecessary for healthy tissue growth. The importance of this culturetechnique is that fluid mechanical conditions obtained in microgravity—and emulatedon Earth—allow the growth of tissues in the laboratory that cannot be grown anyother way. Emulated microgravity on Earth, and to a much greater degree, the actualmicrogravity of spaceflight enable an extremely gentle and quiescent fluiddynamic environment. The cells and substrates are free to organize into 3-Dtissues without the need to introduce disruptive suspension forces from bladesor stirring mechanisms. This leads to a broad array of applications based onenhanced in-vitro tissue culture techniques.

Theground-based versions of the Space Bioreactor produced very high fidelity colontumors for cancer research, providing strong indications of the value of actualmicrogravity, see Figure 1. Even so, when I first put space grown tissuesamples under the microscope, while aboard the Space Station Mir, I wasastounded! In my many years of experience culturing tissues, I had never seenany so well organized, so healthy, and with such fine structure. Nerve derivedtissue from the adrenal gland was forming long fronds of exceptionally delicatetissue, see Figure 2. What I was seeing could never form on Earth, even in ourstate-of-the-art systems that emulate microgravity.


Figure 1, Anartificially produced colon cancer tumor produced
under emulated microgravity on Earth is composed of millions of
cancerous cells forming a 3-D configuration, much like that
which would form in the human body. Work conducted at NASA
in collaboration with Dr. Kim Jessup.
(Image courtesy of Dr. David Wolf)



Figure 2, Neural-derivedadrenal tissue from a pheochromocytoma –
grown in actual microgravity. Photomicrograph taken by Dr. David Wolf
in work conducted on Mir in collaboration with Dr. Peter Lelkes.
(Image courtesy of Dr. David Wolf)

NASA researchin the Space Bioreactors produced over 25 U.S. patents and the technology isconsidered state-of-the-art for ground-based tissue culture. Scientists aroundthe globe from the National Institutes of Health or NIH, medical centers, and universitieshave produced numerous peer reviewed publications in highly respected journalsand even more patents based on the fundamental principles. Other actualspaceflight research has been successfully used to study breast cancer and prostatecancer. NASA has licensed its patents to spin-off companies including Synthecon, Inc., for commercialmanufacturing of the equipment, and Regenetech,Inc., for regenerative medicine and stem cell applications. These companieshave in turn sublicensed the technology even more broadly, enabling widespreaduse of this NASA-developed technology.

Researchers onEarth use this technology to study cancer, stem cells, diabetes, cartilagegrowth, nerve growth, skin, kidney, liver, heart, blood vessels, infectiousdisease—virtually every tissue in the body. The applications go much furtherthan engineering implantable tissue, to include vaccine production and living ex-vivoorganic life support systems, such as artificial livers. Researchers at the NIH,for instance, used the methods to propagate the HIV virus, responsible forAIDS, in artificial lymph node tissue—itself sustained in the bioreactor. This resultedin the ability to study the virus life cycle under controlled conditions,outside the human body.

But we arenot done. While very capable on Earth, the performance of Earth-boundbioreactors is still limited by the presence of gravity. Spaceflight testing onMir and the space shuttle demonstrate that the growth of larger, better functioning,and more organized tissue may be obtained under true low gravity conditions. Todate, the Space Bioreactor has been exploited primarily for basic research. Duringthe intervening time, the field of medicine has evolved a firm vision towardstrue regenerative tissue technology. In recent years, powerful molecular biologytechniques provided a detailed biological knowledge, which permits understandingcellular machinery almost like micro-machines. This convergence of technologywith the space station laboratory opens a new chapter for space biotechnology.

The InternationalSpace Station National Laboratory now provides an unprecedented opportunity tothe biotechnology community. Within NASA, scientists continue to work to build theinfrastructure to enable the biotechnology community; to help them take thenext steps in exploiting controlled gravity in-vitro systems. The vision is toteam together the very best minds and institutions, leveraging their abilitiesto advance regenerative medicine. Such advances can lead to improving ourquality of life on Earth and serve as a lasting legacy of the space station era.

Dr. David Wolf is anastronaut, medical doctor, and electrical engineer. Having traveled to spacefour times, Dr. Wolf participated in three short-duration space shuttlemissions and a long-duration mission to the Russian Space Station Mir. A nativeof Indianapolis, he participated in seven spacewalks, and the SLS-2 Life SciencesSpacelab Mission, logging over 4,040 hours in space. He received the NASAExceptional Engineering Achievement Medal, the NASA Inventor of the Year Award,among multiple recognitions for his work in advancing 3-D tissue engineeringtechnology.