Atlantis Heads Out to the Bloomin’ Ocean

by Stephanie Schollaert Uz / Woods Hole, MA /

The whole is greater than the sum of its parts. To truly understand the whole, however, we need to analyze its parts. That is the mission of the ambitious North Atlantic Aerosols and Marine Ecosystems Study (NAAMES), whose scientists left port Wednesday with the outgoing tide on the research vessel Atlantis.

R/V Atlantis steaming away from Woods Hole on Wednesday, headed to the North Atlantic. Credit: Michael Starobin/NASA
R/V Atlantis steaming away from Woods Hole on Wednesday, headed to the North Atlantic. Credit: Michael Starobin/NASA

During this second of four cruises, the ship is in a rush against time and mother nature to reach its northernmost station before the cyclical, massive spring bloom of phytoplankton spreads across the North Atlantic. This is a time when phytoplankton, microscopic algae at the base of the marine food web, grow faster than other things can eat them. The bloom occurs as sunlight increases and nutrients are plentiful at the water’s wind-mixed surface layer. Once their predators catch up, the phytoplankton decline.

The North Atlantic bloom normally peaks in May. Toby Westberry, of Oregon State University, has been watching satellite imagery carefully for the past few weeks and is worried that the bloom is early and already progressing northward. Westberry and NAAMES principal investigator Mike Behrenfeld, also of Oregon State, worked with the ship’s captain and chief engineer to put additional engines on the Atlantis. They hope to cut the week-long transit time to their first station by a few days so that they don’t miss this short window in the phytoplankton’s annual cycle.

Green seas in this satellite image -- captured by the MODIS instrument on NASA’s Aqua satellite on Wednesday (May 11, 2016) -- indicate that phytoplankton are starting to bloom in the North Atlantic north of 50 degrees North. The small globe in the lower right corner shows the scale of this image as the darker blue box. The approximate track of the Atlantis is sketched as a dashed red line. Credit: Norman Kuring/NASA
Green seas in this satellite image — captured by the MODIS instrument on NASA’s Aqua satellite on Wednesday (May 11, 2016) — indicate that phytoplankton are starting to bloom in the North Atlantic north of 50 degrees North. The small globe in the lower right corner shows the scale of this image as the darker blue box. The approximate track of the Atlantis is sketched as a dashed red line. Credit: Norman Kuring/NASA

NAAMES’ interdisciplinary, multi-institutional science team will take a comprehensive suite of measurements of biological and physical properties in the ocean and also measure the atmosphere for particles and trace gases associated with the spring bloom. This floating laboratory has more sophisticated science equipment per square foot than I have ever seen before. Not to mention an abundance of talented minds to collect and analyze the data through multiple methods from many perspectives.

One of the key goals of the mission is to observe the structure of the phytoplankton community in these ocean blooms to better understand the role of sunlight, predation, and disease by viruses and bacteria. There is a lot of diversity among microscopic phytoplankton and – believe it or not – there is a chance we may be able to distinguish kinds of phytoplankton (their different taxonomic levels) from satellites one day. Data collected by this cruise will assist with that effort.

Cleo Davie-Martin measures volatile organic compounds (gases) the phytoplankton release. Credit: Stephanie Schollaert Uz/NASA
Cleo Davie-Martin, Oregon State University, measures volatile organic compounds (gases) that phytoplankton release. Credit: Stephanie Schollaert Uz/NASA

The other key goal is to determine how plankton interact with the air by releasing small particles and trace gases that can lead to cloud formation. The role of airborne particles in trapping or reflecting sunlight and through cloud formation is one of the biggest open questions in understanding Earth’s climate.

The interdisciplinary ocean and atmospheric science questions of NAAMES parallel those of the upcoming Plankton, Aerosols, Clouds and ocean Ecosystems (PACE) satellite mission to study Earth as a system using an airborne hyperspectral ocean color instrument and polarimeter. Ship-based and airborne measurements will provide valuable information for scientists to develop and test analytical tools to use with future satellite data from PACE.

Jason Graff (left) measures the carbon in phytoplankton through an instrument that bombards sea-water samples with laser and sorts out phytoplankton by their optical response. Cleo Davie-Martin (right) measures volatile organic compounds (gases) the phytoplankton release. Both scientists are from Oregon State University. Credit: Stephanie Schollaert Uz/NASA
Jason Graff, Oregon State University, measures the carbon in phytoplankton through an instrument that bombards sea-water samples with laser and sorts out phytoplankton by their optical response. Credit: Stephanie Schollaert Uz/NASA

And that will bring the project full-circle. The NAAMES field campaign was conceived through analysis of the first continuous ocean color satellite record that Behrenfeld published in 2010. In that study, he noticed the annual phytoplankton spring bloom seemed to start much earlier than previously assumed. Subsequent field campaigns and modeling studies confirmed the basic idea but led to more questions. NAAMES hopes to answer these through its four field campaigns during different phases of the annual life cycle of phytoplankton. Better understanding these important Earth processes will lead to better modeling, that will enable us to more accurately predict and prepare for the future.

Because going to sea is such a precious opportunity, this cruise is packed to the gills with sophisticated sensors and scientists who will study the spring bloom from multiple angles. For the next three weeks, the R/V Atlantis will measure the living ocean along with a C-130 airplane that will fly over the ship collecting measurements of the sea and sky.

When asked about their favorite aspect of going to sea, the food and the camaraderie of shipmates are at the top of most scientists’ lists. Craig Carlson of the University of California at Santa Barbara said, “You’re living in the midst of focused science 24/7. The internet is slow and there are minimal distractions.”

Liz Harvey of the University of Georgia at Skidaway added, “With 16-20 hour days, getting enough sleep is a challenge.”

“Sleep is precious and you build your day around food,” said Graff in agreement. “You’re living on coffee, great food and adrenaline.”

If you’ve spent much time near the ocean, you understand how it can pull you in. And if you haven’t, well, you should.

Life ring and beacon on the R/V Atlantis in case someone falls overboard. Credit: Michael Starobin/NASA
Life ring and beacon on the R/V Atlantis in case someone falls overboard. Credit: Michael Starobin/NASA