Growing Future Scientists with Plant Signaling Space Study

In today’s A Lab Aloft guest post, International Space Station Plant Signaling study Principal Investigator Imara Perera, Ph.D., shares the importance of involving students in science today to groom them for careers in research tomorrow.

I find working with the International Space Station for plant growth studies inspiring, and it’s important to me to share my enthusiasm with the next generation of researchers. Most of the students that work with me in the lab come through some sort of internship program and get class credit for doing research. Students can also apply for research awards from North Carolina State University to fund their work.

My current project, Plant Signaling, generated a lot of interest when I spoke at the university biology club. This talk resulted in several volunteers who wanted to work in the lab, because everyone is excited about doing experiments in space.

The flight portion of the investigation went well. We have images from two experimental runs in the European Modular Cultivation System (EMCS) centrifuge, which the students help us analyze for measurements of plant growth. For the analysis, students measure the root lengths in flight photos to get an idea of the total amount of growth.


Freshman student Kalyani Joshi, analyzing images from the Plant Signaling investigation. (North Carolina State University)

One of the goals of this study is to look at the impact of microgravity on the Arabdopsis thaliana plant growth by comparing how the roots and shoots orient themselves. Seed samples for the study include a wild type and a transgenic line. Plants from the transgenic line are genetically modified to affect their ability to sense and respond to environmental changes.

When examining the images, the first thing we look at is how well the seeds grew. The germination was excellent, and because we have images from different time points—every six hours during five days of operations in orbit—we can compare between the different lines and between the different gravity settings for how the seedlings grew during that period of time.

 
Astronaut Michael Lopez-Alegria works with European Modular Cultivation System experiment containers aboard the International Space Station. (NASA)

We have many images from both the micro-g and 1g environment samples thanks to the setup of the EMCS. The EMCS has two chambers, which is nice because it includes two centrifuges. This allows you to do your 1g ground control in space at the same time you do the microgravity testing. This means you only have the one variable of microgravity, while all other aspects of the space environment are the same.

Usually for microgravity studies you do a ground control vs. a flight experiment; but, it’s not just the gravity that’s different. There are other things that you cannot measure or replicate from that environment, such as radiation, vibration or the presence of other gases. This is a very beneficial control if you want to get at just the difference between microgravity and 1g. In addition, by carrying out a ground reference control on Earth, we can get an idea of some of the other space effects that are not so well defined at this time.


View of the European Modular Cultivation System experiment container replace activity performed in the Destiny laboratory module of the International Space Station. (NASA)

We would like to do more advanced analysis to see if there is any difference in the microgravity vs. the 1g plants. We expect less organized growth in space compared to on the ground, however this is not obvious from looking at the images. We may need to analyze the images more closely, and we are looking at options to see whether or not the pattern of growth is different. As of now we’ve just looked at the total amount of growth and there does not appear to be major differences.

Flight samples returned to Earth with SpaceX Dragon on March 26, so once we get them we can analyze the genetics of the physical samples to understand their changes at a molecular level—specifically in how the plants sense the microgravity environment and how this influences their growth and development. To do that, we will carry out global transcription profiles of the plants, which is like taking a “snapshot” of all the genes that were expressed in the plant. This tells us how the plants are responding, because even though they may look the same, at a molecular level there may be different pathways that are up or down regulated—showing an increase or decrease in cell response—in the transgenic line compared to the wild type.


The image above shows seedlings from the Plant Signaling investigation aboard the International Space Station. (NASA)

By comparing those two plant types, we hope to understand what signaling pathways are involved in plant responses, not just to microgravity, but also based on the space environment’s other factors. We have data from previous years of ground work where we looked at the response of these transgenic plants, and we know they are a little bit delayed and slow to respond to gravity stimulation. If you place a plant horizontally, after some time the shoots and roots reorient back to vertical. The transgenic plants have a harder time doing that, so we have an idea that this pathway is involved in sensing gravity and responding to it.

Just as experiments can produce surprising findings, I often find something unexpected from student participation in my research. Since I’m in a plant biology department, I usually get students that come to work with me with a strong biology background. But this study generated a lot of interest from students within bioengineering programs, so we had some interns who actually didn’t have that much of a biology emphasis, which turned out to be a learning experience both ways.


Students Will Smith (left) and Peter Svizeny (right) working with plants at the North Carolina State University lab. (North Carolina State University)

One student, Benjamin Cowen, was from the physical sciences, and he did some ground-based work using some of the prototype hardware that we use for the flight experiment. It was quite an inspiration for him, and now he’s looking to enter an astrobiology graduate program. It’s useful to have the different backgrounds, because people do not have the same preconceived ideas that we may have developed in biology studies.

I’ve had positive feedback from participating students, including some who have returned to continue working on the study. I had one local high school student, Kalyani Joshi, who came to talk to me before the investigation went up on the flight to the space station. Kalyani was excited about the study and came to volunteer and work in the lab. When she graduated from high school, she applied and was admitted to North Carolina State University. Now she’s a freshman and received some undergraduate research funding, so she’s going to continue to work in the lab. Kalyani’s been doing a lot of the measurements of the space images and really enjoys the project.


The patch design for the International Space Station Plant Signaling investigation. (NASA)

When we were preparing for the experiment, I had another student, Caroline Smith, who worked as my research associate. She is in graduate school now, but plans to come back to help analyze the flight samples. She’s really interested in the findings, as she was instrumental in setting up the experiment.


Research Associate Caroline Smith (foreground) works alongside Principal Investigator Imara Perera at NASA’s Ames Research Center, Moffett Field, Calif., assembling the Plant Signaling investigation. (NASA)

I’m highly committed to including students in the lab setting, having worked with half a dozen for this research project. I anticipate continuing to foster that collaboration. It will be fascinating to see not only what we learn when the Plant Signaling samples come in for analysis, but also to see what comes next for the students inspired by this study.



Imara Perera, principal investigator for the International Space Station Plant Signaling investigation shown here in the lab at North Carolina State University. (North Carolina State University)

Imara Perera, Ph.D., is a research associate professor in the Department of Plant Biology at North Carolina State University. Her primary research interests are in understanding the role of lipid-mediated signaling in plant responses to environmental signals and stress, with the long term goal of improving plant growth under unfavorable conditions. She has been involved in plant gravitational biology research since her postdoctoral work, and she has been a principal investigator on NASA-funded ground-based research since 2001. Currently, Perera is the principal investigator on a spaceflight project entitled “Plant Signaling in Microgravity” to characterize the molecular mechanisms of plant responses to microgravity that was conducted aboard the International Space Station in 2011. 

 

NASA readies to launch the Alpha Magnetic Spectrometer

This week on A Lab Aloft, guest bloggers Trent Martin and Ken Bollweg share their recollections of working on the Alpha Magnetic Spectrometer and their excitement as the investigation ramps up to launch on STS-134, scheduled for May 16, 2011.

With the launch of the Space Shuttle Endeavour STS-134 mission, the hopes and dreams of over 600 physicists, engineers and technicians from 60 institutes in 16 different nations will be carried to International Space Station. The flight is poised to take the Alpha Magnetic Spectrometer – 02 or AMS-02 to its final perch on the top of the space station, where it will finally begin its much anticipated operations.

The AMS-02 is a high energy physics experiment that employs a large magnet—which produces a strong, uniform magnetic field—combined with a state of the art precision spectrometer to search for antimatter, dark matter, and to understand cosmic ray propagation in the universe. The large international team working on this project is led by Nobel laureate Professor Samuel Ting of the Massachusetts Institute of Technology.

The payload is sponsored by the United States Department of Energy, but funding comes from all over the world. This type of international collaboration is common in the world of high energy physics research for the last 50 years and is starting to become more common in the space science community. To date, AMS is the most diversely funded space-based science detector ever built. This is the type of collaboration that NASA hopes the space station National Laboratory will help continue to foster in the space scientific community.

Development of AMS was required to follow NASA standards for flight and ground safety and NASA retained the right to veto anything that violated those requirements. The AMS Collaboration has official responsibility for mission assurance though all the experiment hardware and software were developed to accommodate NASA recommendations for compatibility, reliability, and redundancy.

The successful precursor flight of AMS-01 on STS-91 took place with the last Shuttle-Mir mission in June 1998. There were some communications issues, due to a failed Ku-Band antenna, but the AMS detector performed as expected. The prototype engineering evaluation flight led to improved sensitivity of the measurement of antihelium and helium flux ratio by one part per million and AMS is expected to improve this to one part per billion.

View from Mir of AMS-01 and SpaceHab on STS-91
in June 1998.
(Image courtesy of NASA)

Work on a much more complex version of AMS began immediately after the completion of the STS-91 mission. With numerous increases in size, mass, and interfaces, the need for a second Unique Support Structure or USS-02 became apparent. The versatility of the new carrier was proven as the final payload weight increased from 9,197 to 15,251 lb. The first major upgrade was to change from a permanent version to a more powerful cryogenic superconducting superfluid helium-cooled magnet. Hundreds of internal and external interface, manufacturing, testing, and assembly problems were solved on the way to delivering the cryogenic magnet to the AMS Collaboration.

AMS integrated with the USS-02 and Vacuum Case in
the Space Station Processing Facility (SSPF) at KSC,
March 2011.
(Image courtesy of NASA)

The complexity of the experiment and its interfaces continued to increase as the number of data channels grew from ~70,000 on AMS-01 to over 300,000 on AMS-02.  The tremendous amount of data the experiment is expected to produce required detailed command and data interface coordination with the space shuttle and station. When the decision was made to extend the life of the ISS, the AMS Collaboration decided it would benefit the experiment to use the infinite life of the original Permanent Magnet instead of the limited life of the Cryogenic Magnet. 

Of course, without the space shuttle there would be no way of getting AMS to the space. The shuttle, which will retire this year, provides the gentlest ride to space of any manned or unmanned launch system ever developed. What’s more, without the space station, there would be no location for operations. The station solar arrays make the station the only currently available resource platform capable of generating enough energy to power the AMS and successfully run the investigation.

The ISS National Laboratory is just beginning to realize its potential as a research facility and the AMS investigation will play a significant role in helping to achieve this goal. The station provides guidance, navigation, and attitude control for the experiment. It also provides power, command, and data systems to control the experiment and to relay its data to the ground. NASA provides the tracking relay data satellites, ground stations, and control centers to transfer the commands and data to/from the AMS Payload Operations Control Centers at Johnson Space Center and at CERN.

AMS (foreground) as it will appear when attached to the International
Space Station National Laboratory.
(Image courtesy of NASA)

AMS-02 Ready for Launch in Endeavour’s Payload Bay April 2011.
(Image courtesy of M. Famiglietti)

Although the primary purpose of the AMS-02 payload is to search for antimatter and dark matter, the detector represents the most advanced charge particle detector ever flown in space. In the words of Prof. Ting, “The issues of antimatter in the universe and the origin of Dark Matter probe the foundations of modern physics,” but more importantly “the most exciting objective of AMS is to probe the unknown; to search for phenomena which exist in nature that we have not yet imagined nor had the tools to discover.” With AMS-02, we may now have those tools.

It has been an honor to work with the AMS Collaboration and Nobel prize winner, Professor Ting. I look forward to the launch of this incredible particle detector and to the discoveries and strides it will yield for the field of physics.

Trent Martin is the AMS Project Manager from the Johnson Space Center. He has worked on AMS since 1995 in various capacities for both Lockheed Martin and NASA. In addition, he currently manages the JSC James Webb Space Telescope activities and is a branch chief in the Engineering Directorate.

Ken Bollweg is the AMS Deputy Project Manager from Johnson Space Center. He has worked on AMS since 1994 in various capacities for both Lockheed Martin and NASA. Over the last five years, he and his family has spent three years living in Europe during the integration of AMS.

Research to Watch on the STS-133 Shuttle Launch to the International Space Station

The STS-133 shuttle flight, which launched to the International Space Station on February 24, 2011, includes 5 investigations for crewmembers to perform, delivery of 24 studies with hardware or samples, and 22 investigations with samples or data coming home on the return trip. Allow me to share with you a few of the highlights from this extensive list.

A major milestone from this flight is the final outfitting of the interior of the space station laboratory. NASA launched the last of the Express Racks on STS-133. These workhorses are bench-like structures used to support experiment equipment with power, data, and thermal sensors. The final addition of Express Rack 8 completes the furnishing of the laboratory, making way for full use of the station for research. Future National Lab users will employ about 50 percent of the space available in these racks, doing research that will benefit discovery and economic development of the nation through 2020 and beyond.

Cytokines on a Mission

This flight also includes a unique experiment that will study the very puzzling effects of spaceflight on the immune system. The Effect of Space Flight on Innate Immunity to Respiratory Viral Infections investigation looks at the impact of microgravity on the immune system by challenging it with respiratory syncytial virus (RSV). These studies will help determine the biological significance of space flight-induced changes in immune responses, which astronauts experience in microgravity. NASA and the National Institutes of Health (NIH) are both interested in using the space station to understand the immune system for astronauts and for the health of people here on Earth.

Boiling without Buoyancy

The first premier boiling facility, the Boiling eXperiment Facility (BXF) also launched on STS-133. This equipment enables the study of boiling in space, paving the way for two new investigations to take place on station: Microheater Array Boiling Experiment (BXF-MABE) and Nucleate Pool Boiling Experiment (BXF-NPBX). The boiling process is really different in space, since the vapor phase of a boiling liquid does not rise via buoyancy. Spacecraft and Earth-based systems use boiling to efficiently remove large amounts of heat by generating vapor from liquid. For example, many power plants use this process to generate electricity. An upper limit, called the critical heat flux, exists where the heater is covered with so much vapor that liquid supply to the heater begins to decrease. The goal of BXF-MABE is to determine the critical heat flux during boiling in microgravity. This will facilitate the optimal design of cooling systems on Earth, as well as in space exploration vehicles.

 

Without buoyancy or convection, boiling fluids behave quite differently in space.
(Video courtesy of NASA)

 

The second experiment, BXF-NPBX, studies nucleate boiling, which is bubble growth from a heated surface and the subsequent detachment of the bubble to a cooler surrounding liquid. Bubbles in microgravity grow to different sizes than on Earth and can transfer energy through fluid flow. The BXF-NPBX investigation provides an understanding of the heat transfer and vapor removal processes that take place during nucleate boiling in microgravity. This knowledge is necessary for optimum design and safe operation of heat exchange equipment that uses nucleate boiling as a way to transfer heat in extreme environments, like the deep ocean for submarines and microgravity for spacecraft.

All Fired Up

Also on this flight are some great new combustion experiments. Burning and Suppression of Solids (BASS) tests the hypothesis that materials in microgravity burn as well, if not better than, the same material in normal gravity, all other conditions being identical. Structure and Liftoff In Combustion Experiment (SLICE) investigates the characteristics of flame structure, such as length and lift, using different fuels with varied levels of dilution. SLICE uses a small flow duct with an igniter and nozzle to collect data as a flame detaches from the nozzle and stabilizes at a downstream position. Combustion is dramatically different in space, as seen in the photo below. These studies aim to make spacecraft safer from fires and combustion processes more efficient in microgravity.

 

A flame in Earth’s gravity (left) vs. microgravity (right).
On Earth, warm air rises and cools, leading to the shape of
the orange flame. In space, there is no buoyancy, so the
flame is blue-hot and spherical.
(Image courtesy of NASA)

 

Not So Lost In Space

One of the more publicized technology demonstrations on STS-133 is a humanoid robot that seems like something right out of a sci-fi movie. Robonaut serves as a springboard to help evolve new robotic capabilities in space. Over the next few years, tests of this technology on the space station will demonstrate that a dexterous robot can launch and operate in a space vehicle, manipulate mechanisms in a microgravity environment, function for extended duration within the space environment, assist with tasks, and eventually interact with the crewmembers.

 

The current Robonaut iteration: Robonaut 2.
(Image courtesy of NASA)

 

I am eager to see the results from the various studies beginning, ongoing, and returning from the space station via STS-133. This is an exciting time of full utilization of our laboratory in low Earth orbit!

For a full list of experiments available on this flight, see the STS-133 Press kit or visit https://www.nasa.gov. 

 

Julie A. Robinson, Ph.D.
International Space Station Program Scientist

From Macro to Nano – A New Microscope on the International Space Station

Thisweek’s guest blogger, Dr. Peter Boul, shares some of the exciting facilitydevelopments for the International Space Station National Laboratory with thereaders of A Lab Aloft.

World-class research on the InternationalSpace Station would not be possible without a dedicated suite ofstate-of-the-art laboratory facilities and the project scientists that helpacademic researchers to use them. These are the resources that make experimentspossible and are invaluable to microgravity scientists.

The LightMicroscopy Module (LMM) is a case-in-point for a state-of-the-art facilityenabling high-impact scientific research. This module features a lightmicroscope capable of supplying images of samples on the space stationmagnified by up to 100 times their actual size. These images are digitallyprocessed and relayed back to Earth, where remote control of the microscoperesides. This allows flexible scheduling and control of physical science andbiological science experiments within the Fluids Integrated Rack or FIR on the spacestation. The present LMM will provide high-resolution images of samples andtheir evolution. In the near future, the LMM will produce 3-dimensional digitalimages, with the future addition of a confocal head for the microscope.


NASA astronaut T. J. Creamerperforming operations with the Constrained Vapor Bubble
or CVB investigation using the Light Microscopy Module.

(Image courtesy of NASA)

Dr. William Meyer, who works with scientistsaround the country to develop and complete their investigations using the LMM,recently gave a talk highlighting the microscope at the 2010 conference for theAmerican Institute for Aeronautics and Astronautics, known as AIAA. Accordingto Dr. Meyer, “the LMM is going to provide insights into many classes ofsamples because it provides a microscopic view of samples, which does notrequire theory to provide a bridge to understand what is going on [at themicro- and nanoscales].” 


This 3-Dimage displays some LMM-ACE confocal imaging goals.
(Image courtesy of Dr. Peter Lu, Harvard)

APowerful Lens to Microscale Phenomena in Microgravity

The LMM concept is a modifiedcommercial research imaging light microscope with powerful diagnostic hardwareand interfaces. It creates a cutting edge facility that enables microgravityresearch at a microscopic level.

There are a variety of differentphysics, biology, and engineering experiments already scheduled to use the LMM.One such experiment, the Constrained Vapor Bubble experiment orCVB, is a jointcollaboration between NASA and Peter C. Wayner, Jr., Ph.D. of Rensselaer Polytechnic Institute. CVBinvestigates heat conductance in microgravity as a function of liquid volumeand heat flow rate to determine the heat transport process characteristics in acurved liquid film. The data from this experiment may help scientists andengineers develop reliable temperature and environmental control systems forinterplanetary travel. The information from CVB may also lead to improveddesigns of systems for cooling critical components in microelectronic devices hereon Earth.

VisualizingMolecular Machines

The LMM can also facilitate studies innanotechnology and nanomaterials. Understanding and predicting the forcesbetween nanoscale particles is critical in the design of nanoscale materials. Thescience community is interested in learning more about the forces that regulatemolecular machines, which are crafted for integrationinto new materials and new medicines.

To this end, researchers such as Dr.David Weitz and Dr. Peter Lu with Harvard University, Dr. Paul Chaikin with NewYork University, Dr. Matthew Lynch with Proctor and Gamble, and Dr. Arjun Yodhwith the University of Pennsylvania, along with NASA Glenn Research Center areworking together to conduct a series of Advanced Colloids Experiments or ACE. This investigation looks at howorder arises out of disorder, colloidal engineering, self-assembly, and phaseseparation. Some of the early microgravity colloids work demonstrated used modelingatoms with hard-sphere colloids to understand this idea of order arising fromdisorder. The ACE experiments may give scientists a better description of themagnitudes of the forces that operate on the nanoscale and how to control them.The potential applications from this work are vast and may apply to such topicsas the design of molecular and biomolecular machines, nanoelectromechanicalsystems, and methods for enhancing the shelf-life of medicines and foods.

Using the LMM facility is just one wayin which an investigator can employ the station to pave a path to success in spaceresearch. Investigators now have a wide variety of instruments at theirdisposal on this orbiting laboratory. The outlook for the International SpaceStation National Laboratory is bright and ready to contribute to the next generationof great discoveries in science.

MoreFunding Opportunities

The LMM is a fixed facility on the space station and is available for use forlaboratory experiments. National Laboratory investigators can use this facilitythrough agencies, such as the National Institutes of Health, the NationalScience Foundation, and the Department of Energy. Researchers who wish to seetheir experiments on the space station can find out how to take advantage ofthe opportunity to use facilities, such as the LMM, by visiting the NationalLaboratory For Researchers Webpage. For specific questions, contact the help line at281-244-6187 or e-mail jsc-iss-payloads-helpline@mail.nasa.gov.

Dr. Peter Boul
NASA’s Johnson Space Center
International SpaceStation Program Science Office

Dr.Peter Boul is the Physical Science and External Facilities Specialist in the InternationalSpace Station Program Scientist’s Office. He is an author to numerous patentsand peer-reviewed publications in nanotechnology. Dr. Boul earned his Ph.D. inchemistry under the tutelage of 1996 Nobel Laureate, Prof. Richard E. Smalley.Following his doctoral studies, he was granted a 2-year postdoctoral fellowshipfrom the French government to work with 1987 Nobel Laureate, Prof. Jean-MarieLehn, in dynamic materials.

Tissue Engineering and the International Space Station

This week, comments from guest blogger,medical doctor, engineer, and astronaut, Dr. David Wolf, as he reflects on tissueengineering in space.

The InternationalSpace Station National Laboratory has an edge for doing unique experiments inmedicine and biotechnology that are not possible anywhere else—we can “turnoff” gravity. As we gear up to fully use the station, the emerging field oftissue engineering is one of our high-value targets. This is a particularlypromising area of study where microgravity research has already made advancesin basic science. Indications are that further work will lead to importantapplications in clinical medicine on Earth.

Building onthe groundwork from earlier programs, biotechnology research on the spacestation, and associated ground-based research in emulated microgravity, hascreated a large body of information. This data collection demonstrates thevalue of controlled gravity systems for assembling and growing 3-Dimensional livingtissue from individual cells and substrates. The NASA-developed Space Bioreactorprovides a core in-vitro capability both in space and on Earth.


Dr. Wolf, on SpaceStation Mir, repairing a faulty valve in the Space Bioreactor,
an instrument for precisely controlling the conditions enabling the culture of 3-D
human tissues in microgravity.
(NASA image)

On Earth,these bioreactors are unique in that they are able to emulate, within limits,the far superior fluid mechanical conditions achieved in space. One may thinkof this Space Bioreactor as a 3-D petri plate. The core of the instrumentationis a rotating fluid filled cylinder, the culture vessel, producing conditionsinside resembling the buoyancy found within the womb. And much like in thehuman body, this vessel is surrounded by a life support system performing thefunctions of the heart and lung, achieving the precisely controlled conditionsnecessary for healthy tissue growth. The importance of this culturetechnique is that fluid mechanical conditions obtained in microgravity—and emulatedon Earth—allow the growth of tissues in the laboratory that cannot be grown anyother way. Emulated microgravity on Earth, and to a much greater degree, the actualmicrogravity of spaceflight enable an extremely gentle and quiescent fluiddynamic environment. The cells and substrates are free to organize into 3-Dtissues without the need to introduce disruptive suspension forces from bladesor stirring mechanisms. This leads to a broad array of applications based onenhanced in-vitro tissue culture techniques.

Theground-based versions of the Space Bioreactor produced very high fidelity colontumors for cancer research, providing strong indications of the value of actualmicrogravity, see Figure 1. Even so, when I first put space grown tissuesamples under the microscope, while aboard the Space Station Mir, I wasastounded! In my many years of experience culturing tissues, I had never seenany so well organized, so healthy, and with such fine structure. Nerve derivedtissue from the adrenal gland was forming long fronds of exceptionally delicatetissue, see Figure 2. What I was seeing could never form on Earth, even in ourstate-of-the-art systems that emulate microgravity.


Figure 1, Anartificially produced colon cancer tumor produced
under emulated microgravity on Earth is composed of millions of
cancerous cells forming a 3-D configuration, much like that
which would form in the human body. Work conducted at NASA
in collaboration with Dr. Kim Jessup.
(Image courtesy of Dr. David Wolf)



Figure 2, Neural-derivedadrenal tissue from a pheochromocytoma –
grown in actual microgravity. Photomicrograph taken by Dr. David Wolf
in work conducted on Mir in collaboration with Dr. Peter Lelkes.
(Image courtesy of Dr. David Wolf)

NASA researchin the Space Bioreactors produced over 25 U.S. patents and the technology isconsidered state-of-the-art for ground-based tissue culture. Scientists aroundthe globe from the National Institutes of Health or NIH, medical centers, and universitieshave produced numerous peer reviewed publications in highly respected journalsand even more patents based on the fundamental principles. Other actualspaceflight research has been successfully used to study breast cancer and prostatecancer. NASA has licensed its patents to spin-off companies including Synthecon, Inc., for commercialmanufacturing of the equipment, and Regenetech,Inc., for regenerative medicine and stem cell applications. These companieshave in turn sublicensed the technology even more broadly, enabling widespreaduse of this NASA-developed technology.

Researchers onEarth use this technology to study cancer, stem cells, diabetes, cartilagegrowth, nerve growth, skin, kidney, liver, heart, blood vessels, infectiousdisease—virtually every tissue in the body. The applications go much furtherthan engineering implantable tissue, to include vaccine production and living ex-vivoorganic life support systems, such as artificial livers. Researchers at the NIH,for instance, used the methods to propagate the HIV virus, responsible forAIDS, in artificial lymph node tissue—itself sustained in the bioreactor. This resultedin the ability to study the virus life cycle under controlled conditions,outside the human body.

But we arenot done. While very capable on Earth, the performance of Earth-boundbioreactors is still limited by the presence of gravity. Spaceflight testing onMir and the space shuttle demonstrate that the growth of larger, better functioning,and more organized tissue may be obtained under true low gravity conditions. Todate, the Space Bioreactor has been exploited primarily for basic research. Duringthe intervening time, the field of medicine has evolved a firm vision towardstrue regenerative tissue technology. In recent years, powerful molecular biologytechniques provided a detailed biological knowledge, which permits understandingcellular machinery almost like micro-machines. This convergence of technologywith the space station laboratory opens a new chapter for space biotechnology.

The InternationalSpace Station National Laboratory now provides an unprecedented opportunity tothe biotechnology community. Within NASA, scientists continue to work to build theinfrastructure to enable the biotechnology community; to help them take thenext steps in exploiting controlled gravity in-vitro systems. The vision is toteam together the very best minds and institutions, leveraging their abilitiesto advance regenerative medicine. Such advances can lead to improving ourquality of life on Earth and serve as a lasting legacy of the space station era.

Dr. David Wolf is anastronaut, medical doctor, and electrical engineer. Having traveled to spacefour times, Dr. Wolf participated in three short-duration space shuttlemissions and a long-duration mission to the Russian Space Station Mir. A nativeof Indianapolis, he participated in seven spacewalks, and the SLS-2 Life SciencesSpacelab Mission, logging over 4,040 hours in space. He received the NASAExceptional Engineering Achievement Medal, the NASA Inventor of the Year Award,among multiple recognitions for his work in advancing 3-D tissue engineeringtechnology.

At the Edge of the Valley of Death

Over the past few years, scientists have identified majorchallenges in moving from research discoveries in biomedicine, to actualproducts that improve human health. This gap is called the “valley of death.” Thisterm derives from the perilous divide between research discoveries and medicaltreatments that become available to the general public. On one side of thevalley you find a new research result with important implications, on the otherside of the chasm stands a potential product capable of bettering or even savinghuman lives. In between these two milestones are numerous barriers that cankeep the knowledge from reaching its full potential for humanity.

The redefined discipline of translational medicine seeksto improve the rate at which discoveries actually make it into the marketplaceor from “bench to bedside,” as seen in Traversing theValley of Death: A Guide to Assessing Prospects for Translational Success.The valley of death is so strewn with institutional and marketplace barriers,that experts believe we need to make changes in the support structure fortranslational research. By doing so, they hope that society will actuallyreceive the benefits of science investments. Nature published a news feature on this topic in 2008, titled TranslationalResearch: Crossing the Valley of Death.

These challenges for Earthbound researchers also apply tothe biomedical research conducted on the International Space Station. Even themost compelling research findings on the space station have a long path aheadbefore that knowledge will have the opportunity to yield results—they, too, musttraverse the valley of death.

Today, I want to share the status of three early researchfindings that you may have heard about. The results from these stationinvestigations are just now starting to make their way across the chasm. Thejourney for these results may take as long as two decades to complete, if theyare successful.

SalmonellaVaccine Development:

Spaceflight causes increased pathogenicityin Salmonella bacteria, which is aknown cause of food poisoning. Investigators used space pathogenicity ofsalmonella infecting a model nematode (a type of worm used in research) as ascreening model to evaluate candidate vaccines. The resulting data are leading tothe development of a Food and Drug Administration application for aninvestigational new drug by Astrogenetix, Inc. A similar approach, usingmethicillin-resistant Staphylococcusaureus (MRSA), is also ongoing. Multiple research groups are nowinvestigating mechanisms of virulence in other species of bacteria. Theprogress of this research depends on the future success of several stages ofclinical trials, and the willingness of a pharmaceutical company to bring thevaccine to market. Given the global impact of food poisoning, the market islarge. Even so, it will still depend on a pharmaceutical partner presenting acompelling business case for completing the development.


Eight syringe mechanisms filled with biological constituents
and loaded in a Group Activation Pack are used to test
bacterial pathogens for virulence and therapeutic potential.
(Image courtesy of BioServe Space Technologies)

Microencapsulationof Prostate Cancer Treatment Drugs:

Microcapsules—micro-scale capsules surrounding aninjected medication to help it target a specific area of the body—were producedon the space station in 2002. The properties of the space-producedmicrocapsules were predicted to be more effective in treating prostate cancer;this was shown in ground models. In 2009, researchers were finally able todevelop and patent a machine capable of producing quantities of similar microcapsuleson the ground. NuVue Technology is now trying to raise the money necessary tofund the FDA-approved clinical trials at M.D. Anderson Cancer Center in Houston, TX,and the Mayo Cancer Clinic in Scottsdale, AZ. For obvious reasons, 2010 was notthe best year for raising investor capital for new clinical trials. Globaleconomic struggles and funding hurdles are just a few of many examples of thebarriers to bridging the valley of death.


Micro-balloons containing antitumor drugs
and radio-contrast oil produced in
Microencapsulation Electrostatic Processing
System during International Space Station
Expedition 5.
(Image courtesy of D.R. Morrison)

A NewTreatment For Duchenne’s Muscular Dystrophy:

Protein crystal growth on the space station allowed for theidentification of an improved structure of human hematopoietic prostaglandin D2synthase (HQL-79). The conditions in microgravity allowed for the developmentof a slightly better crystal than previously possible on the ground. Thisimproved model provided investigators with new information on the structure ofthe enzyme. This protein inhibits an enzyme that is more active in patientswith Duchenne’s muscular dystrophy. Based on this knowledge, investigatorsdeveloped a new candidate treatment. It is now undergoing testing via animalmodels, with dramatic early success. This common and debilitating form ofmuscular dystrophy affects approximately 1 in 4,000 males, so the potentialbenefit and market are great. Barriers that could affect the eventualtranslation of the treatment to marketplace, however, include the possibility ofan ineffective candidate drug in clinical trials, despite the successful animalmodel. Likewise, if the drug has unintended effects or if intellectual propertymakes the drug difficult to bring to market, the entire project could tumbleinto the valley.


Crystals of human hematopoietic prostaglandin D
synthase (H-PGDS) grown under terrestrial (a) and
microgravity (b) conditions. In the microgravity
experiment, plate-like crystals were grown with
good morphology. Scale bar corresponds to 100
μm.
(Image courtesy of Osaka Bioscience Institute)

In my role as Program Scientist, I talk frequently aboutthese examples. This is because the advent of their success will validate thediscovery potential of the space station as a laboratory. Critics be warned,however, that the converse is not true. If any or all of these examples do notmake it to market, this only indicates that our society has not built the mostreliable bridge across the valley of death. The National Institutes of Health,pharmaceutical companies, and universities continually seek better bridges sothat scientific discoveries translate more directly into saving human lives. Spacestation researchers join their Earthbound colleagues on this journey to spanthe chasm for the benefit of all humanity.

Julie A. Robinson, Ph.D.
International Space Station Program Scientist

11 for 2011: Julie Robinson on Spaceflight

[From the SciGuy Blog, The Houston Chronicle, originally posted on December 31, 2010.]

11 for ’11: Julie Robinson on spaceflight

During the holiday season I’ve invited 11 of the greater Houston area’s top scientific minds to share a few words on something — a trend, a discovery or an insight — in their field that excites them as they look ahead to the next few years. A new entry in the 11 for ’11 series will be published each morning.

Today’s insight comes from Julie Robinson, chief scientist for the International Space Station.

The International Space Station — the most capable laboratory ever in space — becomes fully available to scientists in 2011. Managed as a National Laboratory, the entire nation will have access for research.

Often critics of the space station, the editors of the journal Nature recently recognized the importance of the laboratory, writing: “In a time of austerity, [researchers] have been handed the ultimate luxury: a new frontier for research that is limited only by their imagination.”

Early use of the space station for research shows compelling possibilities for what scientists will learn. Cellular and microbial biology is poised to make substantial advances. Already, new mechanisms of Salmonella bacteria virulence have been discovered. There are strong indicators that studies of cell differentiation and tissue formation in space could be transforming.

Seeing the station’s potential, the National Institutes of Health have already selected experiments to make use of the laboratory for research that cannot be done on Earth. These studies look at broad areas of human health, including bone remodeling, immune function, and barrier functions of intestinal lining.

Risking scientific whiplash to shift focus to fundamental physics, 2011 will also see the launch of the Alpha Magnetic Spectrometer. This state-of-the-art instrument, developed by hundreds of scientists around the globe, will study the formation of the universe and seek to understand dark matter itself.

From the cosmos to genes in bacteria, the space station is the laboratory to watch for discoveries that could never occur at an Earth-bound lab as the era of space station utilization begins.

To see the rest of the 11 for ’11 essays, click here.

Human in the Loop: The Importance of Humans Conducting Experiments in Space


This week, comments from guest blogger and International Space Station astronaut Peggy Whitson, Ph.D., as she reflects on why it is important to have humans carry out experiments in space.

We do a lot of interesting science on the International Space Station, but the experiments for me that are the most fun are the ones where I get to be more physically involved. Coming from a science background, that is more exciting for me. The InSPACE-2 investigation was actually a lot of fun while on orbit, because it required significant hands on activity to implement the experiment. I had to change the frequency of the electromagnet as it was sending signals and focus the cameras on different views. InSPACE-2 uses an electromagnetic field surrounding a suspension of iron particles in a liquid. Once you add the electromagnetic field, the solution can actually stiffen and form a solid or semisolid structure. This is good for potential applications as shock absorbers for suspension bridges, buildings, etc.

 

 
Expedition 16 Commander Peggy Whitson works with the InSPACE-2
(Investigating the Structure of Paramagnetic Aggregates from Colloidial
Emulsions-2) experiment in the Microgravity Science Glovebox (MSG)
in the U.S. Laboratory/Destiny. (NASA Image: ISS016E021067)

 

On one occasion, because I have old eyes, I was supposed to set the electromagnet to 20 Hz, but I did not see the decimal point and set it to 2.0 Hz. The experiment was testing a theory regarding the lack of gravity to see if there were any differences compared to ground studies. Since I set up the magnetic field strengths differently than the investigators on the ground had planned, we saw some unusual patterns in the structure. It pulsated, forming moving solid strings. This was interesting for the investigators on the ground, because they had not seen this result at 2 Hz previously. After the investigator told me this, I thought we had to look into things further. Anything that they did not see on the ground that we saw in orbit was of interest in understanding the theories and how these colloidal suspensions work.

After we finished our studies at 20 Hz, we went back and repeated the series at 2 Hz, based on the observed unusual differences. I volunteered some of my weekend time to go back and do this, as I enjoyed the hands on aspect of the experiment. For me, as a scientist, this was really satisfying. I think a lot of scientific discoveries are made as a result of the “I wonder why that happened,” rather than the explicit planned results you might have expected. So even though I screwed something up, it was something that the investigators learned from. The fact that I made an error was what enhanced the investigation.

 

 

This type of happy accident can be true in laboratories on Earth, too. Robotically you can perform the planned procedure, but you are not going to necessarily notice any unplanned consequences. Not that humans are always the cause of the unanticipated discoveries, but more interaction can result in different observations or directions that you may take. Observations from a direct crew perspective may not necessarily be noted by investigators on the ground, too, so this is a great way to show crewmember involvement. The more astronauts understand about the objectives of an investigation, the more they can help with those identifications.

There are lots of different payloads that do not work as expected once on orbit, requiring crew interactions; software may need reloaded or hardware jiggled. For instance, in my first flight, I was changing samples out for the Microencapsulation Electrostatic Processing System (MEPS) experiment, which required a huge amount of effort, so much so that I thought I would break it. I think some of the tolerances were not right, and we got the investigation completed only because of extra effort and some brute force. In fact, on the last sample they told me to push as hard as possible to get it in. Had this been done mechanically, you would not necessarily have been able to apply the extra force to complete the experiment and get all the data sets back to the investigators on the ground. There are just little things that do not work in an investigation the way you anticipate.

The Advanced Diagnostic Ultrasound in Microgravity (ADUM) was another favorite investigation of mine that required human interaction. This study looked at whether you could take an untrained crewmember and guide them with ground support and live downlink. The goal was to see if astronauts could obtain viable images for investigators of various different organs; very useful for remote location medical emergencies. This was fun and enabled great interaction with the ground. It was very hands on to manipulate the ultrasound to show the right image for the investigators to see and determine if the images were usable for identification purposes. On Earth, people are now using these techniques to do ultrasounds in remote locations, from the Arctic Circle to athletic arenas.

Being a researcher on the ground has also given me insight about how important it is to be able to actually modify and change your experiment in real time, based on the results you are getting. The human-in-the-loop element gives us that same capability on the International Space Station.

Dr. Peggy Whitson is the Chief of the Astronaut Office and also served as Expedition 5 flight engineer and Expedition 16 commander. She holds a doctorate in biochemistry from Rice University. In today’s blog Dr. Whitson shares her thoughts and experiences as a crewmember and scientist aboard the International Space Station with the readers of A Lab Aloft.

When will we know if research on the ISS has paid off?

I often have the opportunity to do interviews with reporters who are interested in the kind of research happening on the International Space Station. Sometimes they are veteran space reporters, other times they are new and just learning about space research for the first time.

 

Regardless of their past experience, they often ask me for evidence that research on the space station is worth the cost. It is a simple question, but a misleading one. This is because it counts every penny on the cost side, but fails to account for the multiple benefits in addition to research results: international cooperation, engineering accomplishments, and research accomplishments.

 

The space station already benefits the country and the world through its construction and operation—even if it were never used as a laboratory, this would still hold true. We should not lose track of the power of daily international cooperation in constructing, operating and using the space station. The fact that this cooperation is on the cutting edge of space technology and for peaceful purposes amazes the previous generation, but is business as usual for us today. I work closely with colleagues at the main partner agencies, including Russia, the European Space Agency, Japan, and Canada; over 59 countries have participated in space station research or education activities through 2010.

 

Crewmembers from ISS Expedition 20 represent five nations and the five partners in building the International
Space Station: Belgium (European Space Agency), Canada, Japan, Russia, and the United States.
                                                                                                   
Image courtesy of NASA: ISS020e008898

 

The value of the space station as an engineering accomplishment should also not be underestimated. Common standards allow parts manufactured all over the world to interchange and connect flawlessly the first time they meet in orbit. Year round operations, 24 hours a day, 7 days a week, have now extended for 11 years, and we have more than a decade ahead of us. The various life support technologies developed for station provide redundant capabilities to ensure the safety of the crew. They also provide technology advances that benefit people right here on Earth—for example, new compact technologies provided water purification after earthquakes in Pakistan and Haiti.

 

Water filtration plant set up in Balakot, Pakistan, following the earthquake
disaster in 2005. The unit is based on space station technology and processes
water using gravity fed from a mountain stream.

                                       Image courtesy of the Water SecurityTM Corporation

 

Even if we could place a monetary value on peaceful international cooperation and engineering advances from building and operating spacecraft, finding the true long-term payoffs of scientific research is very challenging. Some items could be tabulated as direct benefits from space station research—things such as new materials and products that can have a measurable market impact. Beyond the obvious items, however, the calculations get fuzzy. New products can lead to long-term economic value by making safer vehicles, by extending human life, and even by advancing the quality of life. What might appear as esoteric knowledge may indeed be the first critical steps on the path to a high-value breakthrough. Let us not forget indirect benefits from educational activities, job creation, and economic growth, as well. Colin Macilwain wrote a great critical review of the general challenges of valuing the worth of science in Nature last June, Science Economics: What Science is Really Worth, which I recommend for those interested in the challenge of valuing science.

 

In the coming weeks I will share with you stories of some of the direct benefits that I see coming from space station research. These developed from the modest research throughput during the station assembly period, prior to the full use of the finished laboratory we have today. Based on publications so far, most space station experiments take 2-5 years post-laboratory to publish results. New products related to these results take another 5-10 years or more to transition to a direct benefit. In fact, the space station will be deorbited before an accounting can be completed.

 

Along this journey, there are some really exciting possibilities emerging. I invite you to browse developments from space station research via our key results Web site, as we monitor the progress from knowledge to direct benefits.

 

Julie A. Robinson, Ph.D.

ISS Program Scientist