By Sarah Lang, Ph.D. student at the Graduate School of Oceanography, University of Rhode Island. // Aboard the Bold Horizon //
Going to sea for the first timeas part of NASA’s S-MODE mission has been an experience like no other. You establish a new normal on the boat and quickly fall into new routines. Perceptions of time even change! I joked with some people on the boat that time is but a label on our samples. Perhapsthat’s a bit dramatic, but normal perceptions of time do not apply at sea –especially if you start your day at 2 pm and finish at 2 am.
For me, time flies the fastest when Pat Kelly and I are taking biological samples for long periods of time, looping through our collaborative Spotify playlisttitled “boat songs.” With Talking Heads, Madonna, Mötley Cru, and Fleetwood Mac,we have quite the mix. Pat rolls his eyes any time one of my disco songs comes on, but I know he secretly loves it.
For those on the night shift, their work day doesn’t begin until 4 pm in the afternoon and doesn’t end until 4 am. They have lunch in the middle of the night! And a cup of joe with “breakfast”at the same time those on land are getting home from work.
Most people have the day shift (0400 – 1600) or the night shift (1600 – 0400). A few of us on the biology team have schedules that change all the time,so I get to experience a bit of both.
The day shift is nice because that’s when most meals are served, and if you keep your eyes peeled you might see dolphins, sealions, or whales. The night shift has its perks too. Typically, there is a movie playing in the lounge for those on break. It’s a bit quieter on the boat, except when we’re laughing at Flight of the Conchords or dancing on the back deck during EcoCTD shifts (an EcoCTD is a vertical profiler measuring physical and biological variables). We’ve only had one day of (semi) clear skies, so nights on the water have been especially dark. Beyond the light of the boat, it’s pure darkness. No light from land in sight.
Now onto the science!
We are here to study submesoscale (small! 1-10 km) dynamics in the ocean, which are associated with significant vertical velocities. We care about how climate-relevant parameters like heat and carbon are taken up by the ocean and what happens to them once they are in the ocean. Submesoscale features change really fast, which makes them very difficult to study. In this campaign, we are studying these features with autonomous vehicles (like Saildrones and Wave gliders), Lagrangian floats (which move with the water), airplanes, and of course, the ship. We’ll need all the data we can get to understand these complicated and quickly-changing processes!
Many of us on the biology team are interested in how these small–scale processes structure phytoplankton communities. Phytoplankton are microscopic organisms that undergo photosynthesis, taking up carbon from the ocean and producing much of the oxygen we breathe. They are the base of the marine food web, so if you like fish and dolphins and other sea creatures, you like phytoplankton! It’s important to know the controls on the distributions of phytoplankton species.Complex ecological interactions in the ocean are important to the ocean’s carbon cycle, and therefore, Earth’s climate system.
“Ocean color” is a key piece to this puzzle. We use light to study the biogeochemistry of the ocean. Light interacts with water and the “stuff” that’s in the water (like phytoplankton!). We can quantify these interactions with optical measurements to understand more about the biogeochemistry of the ocean. This is also how we can study the biology of the ocean from space.
In my next blog post, I’ll talk about how we use seawater samples to validate optical measurements, and how we use these optical measurements to understand measurements taken by hyperspectral sensors on airplanes (and eventually in space by NASA’s PACE mission!).
By Igor Uchôa, Ph.D. student at the University of Maryland in the Atmospheric and Oceanic Sciences Department // Aboard the Bold Horizon //
NASA’s S-MODE mission was designed to measure and understand the complex oceanic features classified as “submesoscale,” i.e., features spanning up to 6.2 miles (10 kilometers) across. Such fine filaments and sharp density fronts in the ocean are responsible for fast and unpredictable changes in velocity, temperature, salinity, and even among small organisms called plankton in the surface layer of the ocean. A myriad of autonomous instruments, airborne sensors, and a fully equipped ship are part of the robust methods of measuring submesoscale dynamics in the California Current region.
There are currently more than 40 scientists among researchers, students, and technicians from various institutes working together either virtually all over the country (in the control center), or in the research vessel Bold Horizon (where I currently am) sampling and streaming data for the group to analyze. Within the S-MODE science party, the air-sea interaction group attempts to understand the connections between the submesoscale filaments in the ocean and the atmosphere above them. As part of this group, learning has been my daily activity on the ship.
One of the tasks I am responsible for here, among other science team members, is the launching of instruments called radiosondes while the ship surveys important features in the ocean. The 200 radiosondes stocked in the ship are comprised of a foam cup, a helium-filled balloon, and a sensor. The instruments, which resemble a toy, are incredibly valuable for observing the temperature, humidity, winds, and even cloud-base height of the atmosphere in its first 3.1 miles (5 kilometers) from the surface on average.
The ocean and atmosphere at larger scales actively interact and change each other’s properties. One of the goals of the S-MODE cruise is to find out if this also occurs in submesoscale phenomena such as cold, dense filaments in warm waters as commonly seen in the California Current region.
Installing those sensors is a relatively easier task than the high-tech instruments found on the research vessel, but the practical launching is sometimes a bit… daunting. Knowing how to tie a balloon suddenly becomes essential when you must launch many radiosondes in a small window of time in a rocking ship in windy weather. Also, becoming an expert observer of wind direction is a must-have skill, or else expensive sensors become tangled in the ship and lost forever. It is still a fun procedure, nonetheless, which brings very useful information to the puzzle of understanding air-sea interaction in the submesoscale.
Throughout the process of helping the team launch S-MODE and bring useful data to the group, I had to learn how to take more initiative. I gradually felt that I became part of the plan-of-action for the survey, which I believe is very important for a scientific career, especially for a Ph.D. student like me. Being part of such a high-level research mission is both an overwhelming and exciting learning experience. We still have many days to go, but I am certain that this cruise has already taught me a lot.
Katey Walter Anthony, an ecologist at the University of Alaska-Fairbanks, dips her paddle into the water as her kayak glides across the lake. “Years ago, the ground was about three meters taller and it was a spruce forest,” she says.
Big Trail Lake is a thermokarst lake, which means it formed due to permafrost thaw. Permafrost is ground that stays frozen year round; the permafrost in interior Alaska also has massive wedges of actual ice locked within the frozen ground. When that ice melts, the ground surface collapses and forms a sinkhole that can fill with water. Thus, a thermokarst lake is born.
Walter Anthony is a researcher collaborating with NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) project. She’s studying the formation of these thermokarst lakes and how this process is caused by and contributes to Earth’s changing climate.
“Lakes like Big Trail are new, they’re young, and they are important because these lakes are what’s going to happen in the future,” she explained.
They’re also belching methane – a potent greenhouse gas – into the atmosphere.
At first glance, Big Trail looks like any lake. But look closer and there’s something disturbing the surface: bubbles.
Two things happen as the permafrost layer thaws beneath lakes: microbial activity increases and pathways form in the permafrost . At Big Trail Lake and other thermokarst lakes in the Arctic, microbes digest dead plants and other organic matter in the previously frozen soil in a process that produces carbon dioxide and methane. More rarely, permafrost thaw can form ‘chimneys’ under lakes that allow methane and other gases – previously trapped deep underground – to escape. This release of ‘geologic’ methane is happening at Esieh Lake, another of Katey Walter Anthony’s ABoVE study sites. In all thermokarst lakes, the gases bubble up to the lake surface and release into the atmosphere.
“At Big Trail Lake, it’s like opening your freezer door for the first time and giving all the food in your freezer to microbes to decompose. As they decompose it, they are belching out methane gas,” says Walter Anthony. She leans over and pushes her paddle into the spongy ground under the water, causing clusters of methane bubbles to erupt on the surface.
As the lake freezes in the winter, the bubbles can prevent ice from forming and create pockets of open water that continue emitting methane throughout the season. In other areas, the methane bubbles create frozen domes of ice on the surface of the lake.
“Once ice has formed on these lakes, the rising methane bubbles will freeze into the ice,” explains Franz Meyer, Chief Scientist at the Alaska Satellite Facility in Fairbanks. Meyer is also one of the chief scientists for NISAR, a joint NASA and ISRO satellite that will study our planet. One of the instruments that will be on NISAR is a radar similar to the instrument the ABoVE team is flying over Arctic and boreal regions to study the ground, ice and lakes below.
“These bubbles that we see in the ice change the way that the radar signal interacts with the ice surface,” he explains. The radar can detect roughness – like from frozen methane bubbles – on the surface of the land, ice and water below. Thermokarst lakes with a high roughness, or more bubbles, tend to have higher methane emissions compared to smooth lakes. Combining the airborne radar data with measurements collected in the field allows scientists to estimate how much methane lakes are emitting across a large region.
Walter Anthony says she has something to show us and paddles over to what looks like a piece of trash: an upside down plastic bottle sticking out of the water. It’s a methane collection device, she says, explaining that the bottle traps methane as it bubbles up through the water. Walter Anthony turns a valve and collects a sample of the gas in a smaller bottle, which her team will chemically analyze to determine the age and concentrations of the various gases within.
But there’s a faster way to know if the lake is releasing methane.
Walter Anthony opens the valve, lights a match, and holds it to the opening. A burst of flame ignites. She lets the flame burn for a few seconds and then turns off the valve. It’s like a more extreme version of lighting a gas stove.
There are millions of lakes in the Arctic, but only the newer ones are releasing high amounts of methane. That’s because most Arctic lakes are hundreds or thousands of years old. Those lakes used to be just like Big Trail Lake, but the microbes there have since run out of permafrost organic matter to decompose, and instead are emitting methane from more modern carbon sources. That means the older lakes are no longer emitting as much old methane.
“So what’s a concern for the future, when we think about permafrost carbon feedback, are areas that are newly thawed,” says Walter Anthony. Just like Big Trail Lake.
There’s a freezer door in the mountainside outside of Fairbanks, Alaska. Tom Douglas opens it and we step inside, breathing in cold air and musky dust as we start to walk back through time.
This isn’t fantasy. It’s the Permafrost Tunnel run by the U.S. Army’s Cold Regions Research and Engineering Laboratory in Alaska, where Douglas is a Senior Scientist.
Recently, Douglas led a group of scientists and pilots with NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) on a tour through the Tunnel to learn about permafrost. Permafrost is any soil, ice, or organic matter like plant material or bone that has stayed frozen year-round for at least two years. The tunnel was initially excavated in the 1960s and has been expanded since 2011. Now, the Permafrost Tunnel has almost 500 meters of excavation. “There’s just nowhere else on Earth that has this type of access to permafrost,” said Douglas.
The ABoVE team studies permafrost thaw and its impact on landscapes and ecosystems across the Arctic from the air and above the ground. They also work in conjunction with CRREL and other scientists to figure out how measurements made in and above the permafrost tunnel can be extrapolated to airborne measurements taken from research aircraft. But for many of the ABoVE team members, this is their first time getting to see permafrost up close.
The frozen soil near the tunnel entrance is the same ground that mammoths and steppe bison walked on around 18,000 years ago – and it has the bones to prove it. But as we move deeper into the tunnel and further back in time, these signs of animal life disappear.
Douglas stops at a yellow tag in the deepest, farthest back part of the tunnel. He points out an alder branch sticking out of the wall. “This is the oldest thing in here,” he says. “It’s nearly 45,000 years old.”
Most of the permafrost tunnel is densely compacted dirt and rock. In some places, frozen grasses and other dead plant matter are buried within the walls or hanging from the ceiling. As we walk down further into the tunnel, Douglas points out different features: the thin horizontal lines that show how the land surface moved up over time, strips of ice from water that pooled atop the permafrost and froze, and giant ice wedges.
Arctic permafrost is thawing at an accelerating rate. As permafrost thaws, those ice wedges in the permafrost melt. This creates holes in the ground that can cause the land surface above to subside. This process is called thermokarst – and it’s drastically changing landscapes not only above the Permafrost Tunnel but at locations across Alaska and northwestern Canada. In some areas, the ground is sinking or caving in. In others, new bodies of water called thermokarst lakes are forming.
As we walk through the tunnel, Douglas reminds us that just above our heads is a boreal forest with grasses, shrubs and trees. CRREL scientists have taken measurements above and belowground to try to relate changes in the land surface above to features in the permafrost layer belowground.
Different vegetation types grow on ground that has frozen versus on thawed permafrost, he explains. Black spruce and sphagnum mosses tend to grow above the hard, frozen silt of permafrost. In areas where permafrost is thawing, the trees are often stunted or tilting to the side. Areas with thermokarst features also tend to have vegetation often found in wetlands. wThawing permafrost also changes the soil moisture content. The ABoVE team is measuring both of these factors – vegetation type and soil moisture – from aboard the NASA 802 research aircraft with a radar instrument called UAVSAR.
The work scientists are doing at the CRREL permafrost tunnel helps connect features in the permafrost layer to changes in the ground above that can be remotely sensed with airborne radar instruments – changes the ABoVE team is studying across Alaska and northwestern Canada with research aircraft.
“Measurements we make here at the tunnel can be projected and scaled to help us track these changes across the broader Arctic,” said Douglas.
By Gabrielle Antonioli, Montana State University /BOISE, IDAHO/
“Watch me,” I say to Megan as I tip my skis over the edge of snow at the top of a steep gully in the southern portion of the Sawtooth Mountains in Idaho. She nods knowingly from the ridge above. Not letting her eyes leave me, she watches as I quickly pop off my skis and get my shovel out of my backpack to dig a snow pit. Though this pit is smaller than the snow pit we dug the previous day at the Banner Summit weather station and radar site, it gives us a similar glimpse at the structure of the layered snow under our feet. After a quick test to assess the strength and stability of the snowpack as well as look at the overall structure of the top meter of snow, I determine the snow looks stable (which means the risk of avalanche is low) and we start our ski descent down the narrow snow gully.
The intersection between scientists who study snow and those who are fascinated with mountaineering and avalanches is an interesting one, to say the least. Like many other Earth sciences, we must venture out into the element of study and observe it carefully and with a curious mind to start to understand the complex dynamics by which it operates. And though the snow-centric field of cryosphere science is infinitely interesting, it is an intimidating path to choose. Women in cryosphere sciences – whether on the path of data scientist, glacier researcher, or avalanche forecaster – are few and far between. I met like-minded women like Megan Mason and Isis Brangers when I joined HP Marshall’s Cryosphere Geophysics and Remote Sensing group (CryoGARS) at Boise State University and the NASA SnowEx 2020-2021 campaign he led as co-project scientist. Isis is currently finishing her Ph. D. with the CryoGARS group and previously worked on a project studying snow depth over the European Alps with the European Space Agency’s Sentinel-1 satellite. Megan is currently a research scientist for NASA’s Goddard Space Flight Center.
SnowEx campaigns utilize traditional snowpit observation techniques alongside techniques aimed at being able to monitor and infer properties about the snow from afar. These include Unmanned Aerial Vehicles (UAVs), light detection and ranging (LiDAR), SnowMicroPenetrometry (SMP), liquid water content sensors, ground-penetrating radar, and airborne inferometric synthetic aperture radar (InSAR).
Remote detection of snow water equivalent (SWE) – or how much liquid water a snowpack contains – has long been a goal of hydrologic scientists. SWE is important to other branches of the snow world, like avalanche control and forecasting, which attracts a variety of scientists with specialized skill sets that enable them to reach mountain locations in winter. This work is challenging and involves risk, and I’m continually inspired by the women I meet that can troubleshoot a faulty weather station, dig a full profile science snow pit in a blizzard, and handle adversity of any kind with positivity and determination.
Large hydrology-focused projects like SnowEx can directly benefit the snow and avalanche community, and subsequently many economies across the mountain west. This is where the intersection between backcountry skier and snow scientist occurs. Mapping SWE throughout a mountain range in real-time would shift the entire landscape of forecasting for both snow hazard and spring water run-off monitoring. Currently, these monitoring efforts are based on using index sites such as Snowpack Telemetry sites, or SNOTELs, combined with historical knowledge and experience, to help extrapolate how much water the snowpack holds. Even with current technology, precipitation estimates are relatively unreliable in some places and can be highly uncertain in both amount and type of precipitation. With remote sensing technologies like those being tested with SnowEx, and the women behind the scenes working to improve these technologies, we can fill that gap.
The focus of the 2021 SnowEx airborne and field effort in Idaho was part of an experiment at sites in the Boise and Sawtooth mountains, in addition to sites in Utah, Colorado, and Montana. Radar sensors were flown at 40,000 feet each week across all sites from January through March, producing a time series. The sensor that was used has shown promise for mapping changes in SWE and a similar sensor may one day be launched into space in 2023 by a joint NASA and Indian Space Research Organization satellite mission called NISAR.
Though the 2022 SnowEx campaign was canceled due to COVID-19 concerns, data collection continued at ground-based radar station sites and helicopter LiDAR flyovers continued over these zones. This data is key to refining remote sensing technologies for snow. Collecting data that is both accurate over large areas and sampled at frequent time points is important because accurate snow data estimations require that our instruments are precise.
Snow research is a challenging field to enter, but barriers to that entry are getting lower. Women like Isis and Megan forge a path for others to enter the field with less resistance and support to reach even further. Snow’s ability to serve as a water reservoir is shifting beneath our feet due to climate change, whether we sense it or not. Disparities in weather patterns, rising rain lines in the mountains, and unpredictable climate patterns are at our doorstep. Research like the NASA SnowEx campaign is key in developing new tools to observe these environmental changes. Our efforts to synthesize and utilize new and non-traditional tools as well as offer a diverse and supportive workplace can help us better understand the past and the changing future.
As the snowstorm headed through New York on February 24, one professor at Stony Brook University in Stony Brook, New York spent the hours leading up to it preparing his students to head right into the storm.
Brian Colle, atmospheric science professor at Stony Brook University, is part of many operations in NASA’s Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS).
Whether it’s preparing a team to operate radars and mobile trucks, launching weather balloons, or flying in the cockpit of one of two aircraft used in the experiment, Colle’s job deals with the fun of coordinating and communicating, and the heart of the mission: science. IMPACTS aims to understand the precipitation mechanisms within snowstorms. The campaign uses two aircraft, ground-based radars, weather balloons, computer simulations, and airborne instruments to help answer questions about how snowstorms form and develop, and how to better predict them.
“One of my jobs is serving as the liaison between the teams,” said Colle. “We start with a briefing the morning of, then I’m making sure I know the plan of the day. I’m coordinating, sending emails, making sure the radar truck is ready. As the mission goes along, I’m in contact with the teams the whole time, making sure we’re collecting data. The job isn’t finished until the storm is over.”
Using Mobile Radar Trucks at Key Locations to Capture Data
Colle sent teams of students out midday on February 24 to prepare for the overnight storm. One of the teams operates the mobile radar truck that has a Skyler-2 radar on it, which sends out pulse signals every few seconds to collect observations about the atmosphere from lower altitudes, providing high-resolution data from the large geographic regions it samples. “This is the next generation of radars; [helping us] understand rapid storm evolution,” said Colle.
The truck is also outfitted with a Parsivel instrument, which is a vertically pointed radar that samples the sizes of snowflakes or raindrops, along with a standardized weather instrument package including thermometers, gauges, pressure sensors, and more. Some of the team headed up to the storm hours before it began to find a location with good visibility in all directions. The goal is to have an area where trees and buildings are not blocking the sensing instruments. While collecting data would’ve begun around 1 a.m., internet issues prevented the team from getting the experiment running, but they have collected a great amount of data from past storms.
Launching Weather Balloons in the Depths of the Storm
Back at Stony Brook University, Colle organized a group of students to launch weather balloons on campus to measure temperature, pressure, and humidity at different altitudes. An instrument package is attached to the balloon and can “communicate” with a computer on the ground, sending data back as the balloon rises in the air.
These balloons are launched from a radar truck, which is also equipped with instruments to measure snowflake characteristics. The team started collecting data hours before the two aircraft reached the storms. The P-3 aircraft flies directly into the storm, with instruments aboard to collect data and images from various altitudes. This gives scientists a deeper look at the microphysical properties of the storm, while the ER-2 aircraft flies at roughly 65,000 feet, capturing data with six remote-sensing instruments from above the clouds. The ER-2 arrived at the storm around 4:30 a.m., but the P-3 faced mechanical issues that delayed its launch until the morning of February 25.
The Full Flight Experience
Though not on the P-3 flight this time around, Colle has had the opportunity to fly in the cockpit of the aircraft a few times the past two months, including the February 17 snowstorm in the Chicago area. This falls under his one of many roles but is one of the reasons he joined this mission early on. Interested in studying snowstorms for years, being in the cockpit of the plane during these storms is a lot of fun for Colle. He’s the mission scientist when on the plane, helping interpret the data collected, modify flight tracks, communicate any changes to the pilots, and helping with coordinating the instruments on the plane to make sure everything is functioning and communicating.
One of the lessons he’s learned is how the pilots navigate the busy airspaces. In populated areas like Chicago or New York, there are a lot of planes taking off, flying, and landing, requiring the pilots to coordinate where the aircraft is headed. It requires a team effort to figure out how to best orient the aircraft.
“It’s awesome to be a part of the mission. For many years we didn’t have these opportunities. In the past, I’d take measurements on the ground, collecting snowfall and looking under a microscope at the crystal shapes and habits. Looking at data in real-time, looking out the window, and then interacting with the pilots and hearing what they have to deal with…it’s a continuous science experiment and participating in regions we haven’t sampled before has been very exciting,” said Colle.
As IMPACTS winds down its science experiments this winter, Colle and the rest of the team are looking forward to their opportunities next time around. Winter storms aren’t always the easiest to sample, and the scientists are constantly learning. But the instances in which challenges and difficulties occur only make Colle more confident that the data collected this year will give them better opportunities for improvement next year.
Imagine the feeling of flying on an airplane. Smooth sailing, clear skies, not a cloud in sight. It’s a relaxing ride that many take for work or recreational travel. Now imagine flying through clouds, with the turbulence of different intensities. While some sink and hold onto their seats, others view it like a rollercoaster ride with their adrenaline pumping. Christian Nairy and Jennifer Moore know a thing or two about that.
Nairy and Moore, two atmospheric science graduate students at the University of North Dakota, are part of NASA’s Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS). Their job is to operate probes on one of two aircraft used in the experiments. The P-3 aircraft that houses their airborne office flies directly into the snowstorms, allowing the instruments Nairy and Moore operate to measure snow particles and atmospheric properties within the storm clouds.
IMPACTS is the first comprehensive study of snowstorms in the Northeastern United States in 30 years. The campaign combines satellite data, ground-based radars, weather balloon launches, computer simulations, and airborne instruments to understand snowstorms. The goal is to develop greater comprehension of winter storm formation and development by using several instruments that examine the microphysical characteristics of snow particles at various temperatures and altitudes. The data collected during the multi-year IMPACTS campaign can help advance the future of snowstorm forecasting and predictions.
“If we understand the microphysics of the clouds, what we’re seeing, when we’re seeing them, and how we’re seeing them, it gives scientists in other disciplines a better understanding of what they’re studying,” said Nairy. The IMPACTS experiments will provide robust datasets about winter snowstorms for scientists to analyze and incorporate into their own research.
Nairy and Moore have spent the last few months based at NASA’s Wallops Flight Facility in Virginia, spending their days troubleshooting problems and revamping the nine probes that are on each flight. When a storm is in the forecast, it’s go time. They arrive at the hangar to prepare the probes, computers, and flash drives that will accompany their research in the air. An hour before the plane takes off, they board the P-3 and continue prepping the cloud probes.
All but one of the probes hangs off the tips of the plane’s wings, away from the propellers, each having its own job: taking high-definition photos of ice particles, measuring the total amount of water (both in liquid and ice form), measuring the size of full and partial snow particles, and sampling shattered particles. These data-collecting tools can sample over 30 million particles in a single eight-hour flight alone.
“The whole point is to measure as much as we can when it comes to particles, concentration, sizes and particle habits,” says Moore. “We want to further our understanding of these storms and why they dump snow over the Northeast.”
Once the plane takes off, the team settles in for eight hours of flying and collecting data. Flying through the clouds isn’t always smooth sailing, though. Sometimes there’s turbulence and sometimes the storm quickly changes from snowflakes one minute to liquid water droplets the next. The transitions are quick, but the technology that captures these changes furthers the researchers’ understanding of how snowstorms work. While much of the flight involves looking at data in real-time, there are downtimes where conversation and collaboration can happen. The team chats with other researchers onboard, cracks jokes, takes notes of what they’re seeing and communicates with the IMPACTS HQ ground team at NASA Wallops.
IMPACTS Principal investigator Lynn McMurdie is on the ground at NASA Wallops as the flights take place. While the planes cruise at 300 mph at various altitudes within the storm, she’s constantly communicating with the teams, directing them to sample certain parts of the storm – like snow bands and when to make in-flight adjustments.
Snow bands are narrow structures in the atmosphere that are created by the storm itself. These banded structures tend to cause heavy snowfall. Not all storms produce these bands, however, and sometimes the bands don’t dump lots of snow, which furthers the importance of understanding just why, how, and when they do or don’t form.
“We decide where to fly based on forecasts of our storm of interest,” McMurdie shares. “We tend to draw a line or box of where we want to do our sampling, usually going across any banded structures from one side to the other. Going across the snow bands gives us variability in and outside of the band.”
Sampling snow bands with variability offers researchers’ an improved understanding of how the distribution of snow varies from storm to storm. It’s dependent upon two factors: storm strength and location. There are times when snow bands will drop many inches of snow within a short period of time, but other times when there’s only a light dusting of snow. Sampling from within and outside of the band, and at different altitudes, helps the team see the whole picture of precipitation and snow production.
“The more data we can get, the better we can predict and understand. It’s so important to try and fly in every storm we possibly can,” Moore says. “[The snow storms] can be really impactful, even if it’s an inch or two. You think you understand them, but then you actually get into the science of it. You learn so much more when you’re actually experiencing it.”
As the eight-hour flight prepares to land, Nairy and Moore’s work isn’t done. As soon as the P-3 touches down, the probes are shut off and covered, the data is downloaded to computers, and a post-flight briefing occurs. The two graduate students update and maintain the probes to ensure they’re ready for their next storm-chasing flight. And then it’s time to call it a day.
Andrew Janiszeski and Troy Zaremba blow up a weather balloon in a dark hotel lobby. The weather was calm last night when they drove into Plymouth, Massachusetts, but this morning a blizzard is raging outside. Snow is piling up in the hotel parking lot, wind gusts are near 70mph, and the power is out – but they have a job to do.
Janiszeski and Zaremba, two graduate students at the University of Illinois at Urbana-Champaign, are one of several teams deployed throughout the northeastern United States to launch weather balloons during the approaching snowstorm. While the teams launch weather balloons from the ground, two NASA aircraft will fly overhead to study the storm from a different vantage. The experiments are part of NASA’s multi-year Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Storms (IMPACTS) mission, which is the first comprehensive study of snowstorms across the Eastern United States in 30 years.
Janiszeski and Zaremba bundle up and step out into the blizzard to prepare for the first balloon launch of the day. They bury a communications antenna in a snowbank next to their van and attach a small device, called a radiosonde, to the balloon with tape and zip ties. If all goes well, the radiosonde will measure the balloon’s position as well as the temperature, pressure and humidity at different altitudes as the balloon rises into the sky. This data will help the scientists understand the atmospheric conditions of the storm and how they change with altitude.
They walk the balloon out of the hotel lobby. Double check that the communications antenna and radiosonde are working. Then they let the balloon go.
“It went fifteen feet up, caught a gust of wind, did a loop, dove down, almost hit a car, rag dolled around a tree, went over a gas station, and popped,” said Janiszeski. They tried again with another balloon. Same thing – pop! Hesitant to sacrifice more balloons to the winds, Janiszeski and Zaremba called the IMPACTS Headquarters team to report that they couldn’t launch.
Meanwhile at IMPACTS Headquarters, based at NASA’s Wallops Flight Facility located on the eastern shore of Virginia, scientists monitored the weather and coordinated with the various teams on the ground and in the air. Their goal is to fly the two aircraft – the ER-2 aircraft that flies above the storm clouds and the P-3 aircraft that flies within them – in a stacked formation, one above the other, providing a look at the storm from different perspectives. The team also plans the flights so that the aircraft pass over the teams launching weather balloons and the teams using ground-based radars.
“We’re trying to coordinate all of the equipment to get a nice cross section of the storm. But the storm doesn’t sit still for us, so sometimes we have to adjust our plans,” said Bob Rauber, Director of School of Earth, Society and Environment at the University of Illinois at Urbana-Champaign and one of the assistant flight planners for IMPACTS. There are a lot of factors to consider, though: clearance from the Federal Aviation Administration (FAA), weather forecasts, where the storm is moving and points of interest in its path, and last-minute changes for the aircraft and ground teams – including problematic weather balloon launches.
By early afternoon the winds had subsided to around 40 mile per hour gusts at the balloon launch site in Plymouth, said Janiszeski, so he and Zaremba decided to attempt another launch. They tied the radiosonde to the weather balloon, adding extra zip ties and duct tape for good measure. Then they walked it out of the hotel lobby, took a breath, and let it go.
As soon as it was released, the balloon was taken by the wind. It flipped once, twice, three times, and Janiszeski’s hope plummeted. But then the balloon righted itself and kept rising, and rising, until it was impossible to see.
“It was a miracle,” said Janiszeski. “I really thought we were going to get a whopping zero balloons up at the beginning of the day.” But from there on out, the balloon launches were largely successful, he said. The duo got five successful balloon launches before the storm moved away from Plymouth.
“This was, without the remotest doubt, the most severe conditions we’ve experienced during IMPACTS,” said Janiszeski. “I was getting a little pessimistic, but five radiosondes in a storm like that… We’ll take it as a win.”
By Dragana Perkovic-Martin, Principal Investigator for DopplerScatt at NASA’s Jet Propulsion Laboratory // SOUTHERN CALIFORNIA //
11/02/21
Yesterday was a hard down day for the team – everyone needed a rest after a very active week before. The hard down days are in NASA airborne rules and ensure that fatigue does not set in and keep everyone’s safety the top priority.
To fly or not to fly … Today is supposed to be a good day for optical measurements but the pesky fog is really not willing to leave the area of S-MODE operations. We sit and wait for updates from the ship, satellite imagery and forecasts. In the meantime, we are using the Saildrone measurements of wind speed in the area of interest to determine if it’s worthwhile to operate DopplerScatt. The winds are very low. The hourly reports are telling us that the winds have been below DopplerScatt’s threshold for the whole morning, reporting wind speeds of one meter per second. At this wind speed the ocean surface is very still, so still that it may look like a mirror. This is bad news for radar signals bouncing off the surface as their strength depends on the surface roughness. No dice for DopplerScatt today, and the same decision was made for the MOSES and MASS instruments on the Twin Otter.
11/03/21
Remember that pesky problem with the monitor from last week? I overnighted a replacement monitor for the DopplerScatt team since yesterday was a doozy with no flights, they decided to swap out the monitor and keyboard on the plane. Trouble is they did not test that it worked. We just thought, “well what could go wrong, it’s the same model.” What do you know, it did go wrong! I’ll spare you the details and the frantic messaging between myself and the operators, but after some time they realized that the power cable was not plugged in and the monitor was not getting power. All in a day of DopplerScatt deployments!
11/04/21
Today is a science extravaganza! We have a big day ahead of us with two NASA King Air B200 flights planned and all of the in-water assets sampling data throughout the day. The weather is finally cooperating and we have a clear yet windy day ahead of us. The plan today is to fly a morning flight – which just took off at 8am – and then another one leaving approximately 6 hours later and flying the exact same pattern. The comparison of data between the two will tell us about the daily variability of the ocean processes.
“This is one of the reasons why I am so excited about S-MODE,” said Hector Torres, DopplerScatt team member, operator and one of the main people responsible for simulating ocean processes. “The results based on theory and numerical simulations produced in the last five years are about to get confirmed or debunked today. Either way it will be a breakthrough!”
Flight one is now done! There were some pesky low clouds right in the area of collection that prevented MOSES from collecting quality data for half of the flight, but the second half was great. DopplerScatt data collection went as planned and data are churning already! We are seeing the first quick look data products trickle in as we watch the afternoon flight take off.
While the first flight was a bit difficult for our optical colleague running the MOSES system, Jeroen Molemaker from the University of California, Los Angeles, the afternoon was gloriously clear and provided a great opportunity for all airborne instruments to collect data at the same time.
Today the S-MODE pilot experiment operated as we envisioned many months ago, with all platforms sampling data throughout the day over the area of interest. The field experiment crew is tired but happy and the team is excited about the science that we will extract from this data set.
11/05/21
Today is the final day of the S-MODE pilot campaign. It’s a bittersweet feeling for me as it was so much fun to collaborate and coordinate daily activities with so many people. I will miss that, but I certainly will not miss the hectic calls of “we have a problem with …”
The NASA King Air B200 will fly in the afternoon collecting data in the western region of the S-MODE study area together with the Twin Otter aircraft. Meanwhile, our friends on the ship will start recovering the autonomous assets and make their way toward Newport, Oregon.
Trouble struck again as our GPS unit could not get itself aligned and produce a good navigation solution, requiring a power reset and making S-turns i.e. banking the aircraft left and right in succession. After this excitement things went smoothly for the rest of the flight. You never know what will go wrong during a field deployment, you just know that something will and you need to be prepared to react and fix things without letting the panic set in! Thankfully that is what happened today thanks to Alex Winteer, a DopplerScatt operator from NASA JPL. He performed a cool and collected power reset while in air!
Now it is time to work on our post-deployment to do list and eagerly await results of data processing.
I will leave you with two short blurbs from DopplerScatt team members Alex and Karthik about their impressions of the pilot campaign.
“On most days, you don’t wake up looking forward to a boring day. As an instrument operator, a boring day during a deployment, however, is a different story. You look forward to sitting in a small round aluminum tube for 4.5 hours with nothing to do. That is a perfect day – a day when the radar just works. No last minute excitement of monitors not turning on (because someone unplugged it and forgot to plug it back in!) or the satellite phone connection not working. While the entire science team is excited about an action-packed day of coincident data collection, all the instrument operators look forward to is a day where everything just works as it should! Of course, sitting in an aluminum tube for many hours, staring out at the ocean with nothing to do makes you yearn for some excitement, but that is a fleeting thought until you get a text message via satellite link asking you to pay attention to the speed of the aircraft!”
– Karthik Srinivasan, NASA JPL DopplerScatt operator
“I’ve been on quite a few field deployments with DopplerScatt, but none quite as exciting – or as important—as this one. Indeed, such a coordinated effort consisting of multiple aircraft and many assets in the water has never been attempted, and the resulting science will lead to new understanding of our ocean, atmosphere and the climate system as a whole. On Thursday, we attempted two flights for the first time. I operated the first flight: crew brief at 6:30 AM with a takeoff time of 8 AM. Thankfully, our instrument operated normally, and we were able to fly a bit lower –under the clouds – to ensure MOSES could see the ocean surface with its infrared camera. We landed five hours later, at around 1 PM, and I immediately took our data back to our field processing center in the aircraft hangar to start crunching. In the meantime, Karthik took off for our second flight of the day. By the time I finished the first round of processing, it was 5 PM and Karthik was almost back from the second flight, so I went downstairs to welcome him back (and grab the data!). A few hours later, we had both flights processed to quick look data products and I was exhausted. Being just one person, a small part of a much larger mission, it can be easy to lose sight of why we do this, especially when the hours are long. But when the data started pouring in, my exhaustion was quickly replaced by excitement. We were seeing a dataset no one had ever seen before. With these two flights, we are able to not just see the sub-mesoscale structure of the ocean surface over a large area, but we could also see its evolution over time and how the atmosphere interacts with that evolution! There is much work to go in analyzing these data, especially in comparing the many other instruments to our DopplerScatt measurements, but I am grateful to play a part in that analysis, discovery and understanding.”
By Alison Gold // NASA GODDARD SPACE FLIGHT CENTER, MARYLAND //
NASA’s Sub-Mesoscale Ocean Dynamics Experiment (S-MODE) relies on two aircraft, 17 remote-controlled vehicles, a ship and dozens of drifting instruments to make its detailed study of ocean eddies, currents and whirlpools. The researchers aim to assess how these small, high-energy ocean events contribute to circulation and heat exchange in the upper ocean, and how oceans affect climate change. The tools are stationed in a 7,800 square mile (roughly 20,200 square km) area west of San Francisco Bay, which the researchers call the “S-MODE Polygon.”
But one of the mission’s most critical tools, its control center, is not on site. The control center is a virtual daily meeting where up to 40 scientists gather to share new data, check in on the mission’s assets and plan where to maneuver their instruments and vehicles to capture the most useful measurements.
The S-MODE researchers are studying sub-mesoscale ocean processes like eddies – swirling pockets of ocean water that stretch about 6.2 miles or 10 kilometers in distance and often last for only a few days. Because eddies are relatively small and quick-fading, they can be challenging to study. Opportunities to study these processes often spring up with little warning. To study these events, the S-MODE team needs to be able to move their vehicles around quickly and strategically within the polygon.
For instance, one of the airborne instruments may spot an eddie or whirlpool developing. The scientists may then decide which water measurements they would like to gather, and agree to send the appropriate mission vehicles out to the location of interest. The scientists discuss such decisions at control center meetings.
During the call, representatives for each of the assets begin by providing their status updates.
“First, we review the data our assets are seeing in the field that day or the day before, and then decide what is the interesting feature that we want to study,” said Dragana Perkovic-Martin, principal investigator for DopplerScatt, one of S-MODE’s airborne instruments, at NASA’s Jet Propulsion Laboratory. “Based on that decision, we determine which assets we need in that spot and position them in the right area.”
The control center was originally going to be hosted in-person at the NASA Ames Research Center in Silicon Valley, California.
“The idea was for a group of us to work together there to examine the conditions and the data and to update the plan as things unfolded,” said Tom Farrar, S-MODE Principal Investigator and a scientist at Woods Hole Oceanographic Institution in Falmouth, Massachusetts. As COVID-19 cases surged in late summer 2021, the team decided to shift to a virtual format. Now, the only people who are in the field are those who cannot complete their work remotely, like those flying the planes or collecting measurements aboard the ship.
All of the scientists involved in S-MODE have done traditional field deployments before, Perkovic-Martin said. But few have had experience coordinating an expedition from a virtual control center. The group has adapted quickly with the help of online platforms including Slack, WebEx, email, and Zoom.
“The control center works in much the same way as originally envisioned, with a group of people trying to take in as much information about what is happening to make decisions about the plan,” Farrar said.
One of the S-MODE Deputy Principal Investigators, Professor Eric D’Asaro of the University of Washington, leads control center meetings, with the goal of ending each meeting with an updated plan for the next few days.
“We have benefitted a lot from Eric’s enthusiasm, and his experience in other large field campaigns,” Farrar said. “We have a great team of experts and specialists, and I’m really excited about the coordinated dataset the team is collecting.”