Flying Scientific Detours Is All Part of the Plan

The NAAMES team prepares for the transit flight to St. John’s International Airport, where it will reside between science flights in which the C-130 rendezvous with the R/V Atlantis in the North Atlantic. Credit: NASA/Denise Lineberry
The NAAMES team prepares for the transit flight to St. John’s International Airport, where it will reside between science flights in which the C-130 will rendezvous with the R/V Atlantis in the North Atlantic. Credit: NASA/Denise Lineberry

by Denise Lineberry / ST. JOHN’S, CANADA /

On Friday, May 13, Shane Tungate, the aircraft loadmaster, provides a safety briefing to some of the NAAMES, or North Atlantic Aerosols and Marine Ecosystems Study, team members at NASA’s Langley Research Center, who are preparing to board the C-130 for St. John’s International Airport, Newfoundland. Before the team even gets the chance to get seated, someone hollers out, “Power down!”

An invertor replacement is needed for the engine. At NASA’s Wallops Flight Facility, located on Virginia’s Eastern Shore, someone hops in a golf cart to hunt down a replacement from a non-flyable “parts plane.”  The part is found and the B-200 flies it some 75 miles from Wallops to Langley. The part is replaced, and the C-130 flight is three hours behind scheduled takeoff, but preparing for flight.

NAAMES is in the field this month on the second of four deployments. About half the carbon dioxide emitted into Earth’s atmosphere each year ends up in the ocean, and plankton absorbs a lot of it. NAAMES studies the world’s largest plankton bloom and how it gives rise to small organic particles that leave the ocean and end up in the atmosphere, ultimately influencing clouds and climate. This month coincides with a critical phase of the bloom. Researchers will take measurements by sea and by air from St. John’s.

Not much is conventional about a ride on NASA’s C-130. The seat belt buckle looks a little like it’s from medieval times. Some walls are covered in diamond-stitched liner and many stretches and bundles of cords line the sides and top of the aircraft’s interior. Window seats are not an option since the only windows are on the aircraft’s three doors and in the cockpit.

Seat belt
The seatbelt buckle on the C-130H. It doesn’t have to be pretty; it just has to work. Credit: NASA/Denise Lineberry

When in flight, the cockpit’s room temperature is about 70 degrees F. The middle of the plane, where a majority of the team is seated, is about 60 degrees F. The back of the plane, occupied by items such as water and luggage, is about 30 degrees F.

The takeoff is smooth and the team’s screens immediately begin to light up with colorful data plots from instruments on board the C-130, such as the GCAS (GeoCAPE Airborne Simulator) and AMS (Aerosol Mass Spectrometer).

It is a nonstop transit flight with the end goal of getting the team to St. John’s to start planning science flights in coordination with the R/V Atlantis. However, the scientists are so anxious to get data that they set up some scientific detours along the way.

Remote sensing instruments on board the C-130 gather color gradient measurements, from the clear water in the Albemarle Sound to the most productive ocean water in the world in the North Atlantic.

“You can see a distinct change in ocean,” one team member says over the aircraft’s communication system as we pass from one gradient to another.

The C-130 also spirals down over Sable Island, just southwest of Newfoundland.  From the cockpit, the surface water goes from flat to angled, flat to angled, as the pilots circle the aircraft lower. The island comes in and out of sight, along with the sun and a pod of seals hopping in and out of the water. It’s such a beautiful view and a surprisingly pleasant circling descent that it’s almost easy to forget this maneuver has a scientific purpose — Sable Island is home to a ground observation site that double-checks the accuracy of aerosol measurements being made on the C-130.

“This looks like an ideal spot,” says NASA Langley scientist Ewan Crosbie over the C-130 telecom.

“Roger that,” says NAAMES Deputy Project Scientist Rich Moore.

“Beginning descent,” the pilot communicates.

They are descending into a “box,” or identified and secured airspace, that was specifically mapped out to test a new instrument that samples cloud water from low-level, warm clouds.

From the ground site on Sable Island, the C-130 can be seen passing over in the upper distance. Credit: NASA/Codey Barnett
From the ground site on Sable Island, the C-130 can be seen passing over in the distance. Credit: NASA/Codey Barnett

The grand finale of the transit flight includes an overpass of the R/V Atlantis in the North Atlantic. The comparison and combination of the shipborne and airborne measurements are the bread and butter of the NAAMES mission. And this initial flight over the Atlantis marks the first of several that will take place over the next few weeks to better understand the ocean-atmosphere interaction.

In the moments before landing, Moore calls out to the instrument teams for checks before powering down the aircraft. All instruments gathered data and the team is delighted to have such clear conditions to measure — thanks to the NAAMES meteorologists who forecasted that leaving a day earlier than planned would be best for the instrument teams.

Weekend plans in St. John’s for NAAMES involve aircraft and instrument maintenance, weather forecasting and flight planning for the first official science flight, tentatively scheduled for Tuesday, May 17.

Atlantis Heads Out to the Bloomin’ Ocean

by Stephanie Schollaert Uz / Woods Hole, MA /

The whole is greater than the sum of its parts. To truly understand the whole, however, we need to analyze its parts. That is the mission of the ambitious North Atlantic Aerosols and Marine Ecosystems Study (NAAMES), whose scientists left port Wednesday with the outgoing tide on the research vessel Atlantis.

R/V Atlantis steaming away from Woods Hole on Wednesday, headed to the North Atlantic. Credit: Michael Starobin/NASA
R/V Atlantis steaming away from Woods Hole on Wednesday, headed to the North Atlantic. Credit: Michael Starobin/NASA

During this second of four cruises, the ship is in a rush against time and mother nature to reach its northernmost station before the cyclical, massive spring bloom of phytoplankton spreads across the North Atlantic. This is a time when phytoplankton, microscopic algae at the base of the marine food web, grow faster than other things can eat them. The bloom occurs as sunlight increases and nutrients are plentiful at the water’s wind-mixed surface layer. Once their predators catch up, the phytoplankton decline.

The North Atlantic bloom normally peaks in May. Toby Westberry, of Oregon State University, has been watching satellite imagery carefully for the past few weeks and is worried that the bloom is early and already progressing northward. Westberry and NAAMES principal investigator Mike Behrenfeld, also of Oregon State, worked with the ship’s captain and chief engineer to put additional engines on the Atlantis. They hope to cut the week-long transit time to their first station by a few days so that they don’t miss this short window in the phytoplankton’s annual cycle.

Green seas in this satellite image -- captured by the MODIS instrument on NASA’s Aqua satellite on Wednesday (May 11, 2016) -- indicate that phytoplankton are starting to bloom in the North Atlantic north of 50 degrees North. The small globe in the lower right corner shows the scale of this image as the darker blue box. The approximate track of the Atlantis is sketched as a dashed red line. Credit: Norman Kuring/NASA
Green seas in this satellite image — captured by the MODIS instrument on NASA’s Aqua satellite on Wednesday (May 11, 2016) — indicate that phytoplankton are starting to bloom in the North Atlantic north of 50 degrees North. The small globe in the lower right corner shows the scale of this image as the darker blue box. The approximate track of the Atlantis is sketched as a dashed red line. Credit: Norman Kuring/NASA

NAAMES’ interdisciplinary, multi-institutional science team will take a comprehensive suite of measurements of biological and physical properties in the ocean and also measure the atmosphere for particles and trace gases associated with the spring bloom. This floating laboratory has more sophisticated science equipment per square foot than I have ever seen before. Not to mention an abundance of talented minds to collect and analyze the data through multiple methods from many perspectives.

One of the key goals of the mission is to observe the structure of the phytoplankton community in these ocean blooms to better understand the role of sunlight, predation, and disease by viruses and bacteria. There is a lot of diversity among microscopic phytoplankton and – believe it or not – there is a chance we may be able to distinguish kinds of phytoplankton (their different taxonomic levels) from satellites one day. Data collected by this cruise will assist with that effort.

Cleo Davie-Martin measures volatile organic compounds (gases) the phytoplankton release. Credit: Stephanie Schollaert Uz/NASA
Cleo Davie-Martin, Oregon State University, measures volatile organic compounds (gases) that phytoplankton release. Credit: Stephanie Schollaert Uz/NASA

The other key goal is to determine how plankton interact with the air by releasing small particles and trace gases that can lead to cloud formation. The role of airborne particles in trapping or reflecting sunlight and through cloud formation is one of the biggest open questions in understanding Earth’s climate.

The interdisciplinary ocean and atmospheric science questions of NAAMES parallel those of the upcoming Plankton, Aerosols, Clouds and ocean Ecosystems (PACE) satellite mission to study Earth as a system using an airborne hyperspectral ocean color instrument and polarimeter. Ship-based and airborne measurements will provide valuable information for scientists to develop and test analytical tools to use with future satellite data from PACE.

Jason Graff (left) measures the carbon in phytoplankton through an instrument that bombards sea-water samples with laser and sorts out phytoplankton by their optical response. Cleo Davie-Martin (right) measures volatile organic compounds (gases) the phytoplankton release. Both scientists are from Oregon State University. Credit: Stephanie Schollaert Uz/NASA
Jason Graff, Oregon State University, measures the carbon in phytoplankton through an instrument that bombards sea-water samples with laser and sorts out phytoplankton by their optical response. Credit: Stephanie Schollaert Uz/NASA

And that will bring the project full-circle. The NAAMES field campaign was conceived through analysis of the first continuous ocean color satellite record that Behrenfeld published in 2010. In that study, he noticed the annual phytoplankton spring bloom seemed to start much earlier than previously assumed. Subsequent field campaigns and modeling studies confirmed the basic idea but led to more questions. NAAMES hopes to answer these through its four field campaigns during different phases of the annual life cycle of phytoplankton. Better understanding these important Earth processes will lead to better modeling, that will enable us to more accurately predict and prepare for the future.

Because going to sea is such a precious opportunity, this cruise is packed to the gills with sophisticated sensors and scientists who will study the spring bloom from multiple angles. For the next three weeks, the R/V Atlantis will measure the living ocean along with a C-130 airplane that will fly over the ship collecting measurements of the sea and sky.

When asked about their favorite aspect of going to sea, the food and the camaraderie of shipmates are at the top of most scientists’ lists. Craig Carlson of the University of California at Santa Barbara said, “You’re living in the midst of focused science 24/7. The internet is slow and there are minimal distractions.”

Liz Harvey of the University of Georgia at Skidaway added, “With 16-20 hour days, getting enough sleep is a challenge.”

“Sleep is precious and you build your day around food,” said Graff in agreement. “You’re living on coffee, great food and adrenaline.”

If you’ve spent much time near the ocean, you understand how it can pull you in. And if you haven’t, well, you should.

Life ring and beacon on the R/V Atlantis in case someone falls overboard. Credit: Michael Starobin/NASA
Life ring and beacon on the R/V Atlantis in case someone falls overboard. Credit: Michael Starobin/NASA

 

Setting a Course for the World’s Largest Plankton Bloom

The research vessel Atlantis in port. Credit: Michael Starobin/NASA
The research vessel Atlantis in port. Credit: Michael Starobin/NASA

by Stephanie Schollaert Uz / Woods Hole, MA /

Stephanie Schollaert Uz, PhD, is an ocean scientist working in the Ocean Ecology Lab at NASA Goddard Space Flight Center in Greenbelt, Maryland. Her research interests include the response of ocean biology to physics. She also coordinates communications for the future NASA ocean color satellite PACE, which will be designed to monitor plankton, ocean ecosystems, airborne particles and clouds.

Timing is everything in life. As the second North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) cruise prepares to get underway tomorrow, a tightly choreographed and synchronized mobilization plan has been in full swing on the research vessel Atlantis.

From ship crew to the science party and the extra helpers in port, everyone is getting the ship ready for its mission to chase and measure the springtime peak in the North Atlantic phytoplankton bloom and the airborne particles they can release to the atmosphere under the right conditions. Their findings will help scientists better understand how these processes influence clouds and climate.

One week ago, Atlantis returned to its home port in Woods Hole, Massachusetts from its previous mission of searching for the merchant ship El Faro that sank last fall. The ship’s crew and scientists have a total of nine days to turn Atlantis from a ship seeking a single black box in the deep ocean to one seeking billions of plankton in the sun-lit surface ocean and airborne particles in the atmosphere.

The research vessel Atlantis in port during the off-load of the submersible Alvin as the ship prepares for its second NAAMES field campaign. Credit: Dick Pittenger/WHOI
The research vessel Atlantis in port during the off-load of the submersible Alvin as the ship prepares for its second NAAMES field campaign. Credit: Dick Pittenger/WHOI

NAAMES Chief Scientist Michael Behrenfeld of Oregon State University compares the transformation with a puzzle: first, the equipment from the last cruise was removed. The deep-diving submersible Alvin needed to be carefully lifted off using a commercial crane.

Next, the ship was loaded with NAAMES equipment, starting with the biggest gear. Cranes moved four shipping containers, which were outfitted as lab space to measure aerosols, onto the ship’s deck, followed by boxes of sophisticated optical instruments, incubators and other equipment needed for detecting phytoplankton, zooplankton, bacteria and viruses as they cycle through life and death. Several instruments also measure chemistry related to biological processes in the ocean.

According to Ken Kostel with Woods Hole Oceanographic Institution (WHOI) Communications, this cruise requires more equipment than he’s seen on a typical cruise. Many of the science instruments are unusual, such as snorkels on the ship’s forward half that will continuously intake air to be analyzed for its aerosol content. There are also seawater flow-through systems to analyze ocean biology during the peak of the spring bloom and its subsequent decay. Several instruments will be deployed over the side of the ship. Some will profile the ocean down through the mixed layer, and even deeper, as is the case for the Argo floats.

Françoise Morison (left) of the University of Rhode Island and Caitlin Russell, a former intern at the University of Rhode Island, secure incubators to be used for measuring phytoplankton growth rate under various light levels and their consumption by single-celled organisms and viruses. Credit: Stephanie Schollaert Uz/NASA
Françoise Morison (left) of the University of Rhode Island and Caitlin Russell, a former intern at the University of Rhode Island, secure incubators to be used for measuring phytoplankton growth rate under various light levels and their consumption by single-celled organisms and viruses. Credit: Stephanie Schollaert Uz/NASA

Behrenfeld has been studying rare cloud-free satellite images of the North Atlantic, the last clear view being in mid-April, and noticed an earlier spring bloom than usual this year starting in the subtropical North Atlantic. Because the spring bloom progresses northward, he hopes to catch the end of the bloom peak in the north and monitor its decline as the ship transits southward – very valuable scientific information that has never before been measured in all its complexity.

The main lab on Atlantis where the science party will conduct many analyses while underway, along with measurements taken in several other labs and vans. Credit: Michael Starobin/NASA
While underway, the science party will conduct many analyses in Atlantis’s main lab. Credit: Michael Starobin/NASA

In addition to the science party, the ship’s crew is busy preparing. The captain, Al Lunt, piloted the NAAMES cruise last fall. It will take Atlantis about a week to get to their northernmost station: southeast of Greenland, around 60 degrees north and 40 degrees west. From there, they will steam directly south through six stations, the last being around 40 degrees north and 40 degrees west.

Meanwhile, the ship’s navigator and second mate, Logan Johnsen, is calculating the best transit route using weather and ocean maps from the National Oceanic and Atmospheric Administration’s Ocean Prediction Center. Also included are maps of glaciers that the ship would rather avoid. (The Titanic had unlucky timing in that regard and lacked the benefit of modern technology.)

Logan Johnsen, Atlantis navigator and second mate, studies weather and ocean forecast products to plan the best course to the ship’s North Atlantic study site. Credit: Stephanie Schollaert Uz/NASA
Logan Johnsen, Atlantis navigator and second mate, studies weather and ocean forecast products to plan the best course to the ship’s North Atlantic study site. Credit: Stephanie Schollaert Uz/NASA

At 275 feet long, Atlantis is one of the biggest and most expensive ships in the US Academic Research Fleet, owned by the US Navy and operated by WHOI. A day at sea costs approximately $50,000. Its funding comes from a number of federal agencies like the National Science Foundation (NSF), NASA and the Office of Naval Research. According to Rose Dufour of NSF, between 75 and 95 percent of its cost is covered by NSF in a typical year.

Aligning a cruise to a location of interest can take several years of planning, preparation and waiting your turn. In the end, whether this well-equipped NASA-funded NAAMES campaign catches the North Atlantic spring bloom will depend on its timing.

A Visit to Taehwa Research Forest

Forest from above

by Emily Schaller / OSAN AIR BASE, SOUTH KOREA /

Driving up a winding, bumpy road through a peaceful forest with tall pine trees towering over us, it was easy to forget that the megacity of Seoul was only 25 miles away.

This serene spot is the location of theTaehwa Mountain Forest Research site, one of the ground-monitoring “super sites” for the Korea US Air Quality (KORUS-AQ) study.    

South Korea maintains a network of more than 300 air quality research stations across the peninsula. KORUS-AQ is making use of data from these ground sites and has added significantly to the instrumentation at two locations (Olympic Park and Taehwa Mountain) and dubbed them ground “super sites.”

The Taehwa site hosts a suite of air quality monitoring instruments from the Korean National Institute for Environmental Research (NIER), NASA, the University of California Irvine, Korea University, the U.S. Environmental Protection Agency and Aerodyne Systems.

One of the key issues for improving air quality forecasts is better understanding how human emissions from cars, power plants and industry interact with natural emissions from trees and plants.  Although we usually think of forest air as being completely clean, chemical emissions from trees — called volatile organic compounds (VOCs) — are not always benign, especially when these emissions mix and react with urban emissions.  These reactions can form ozone, a gas that is harmful to both human and plant health, as well as secondary organic aerosol particles. Understanding the complex chemistry taking place on the boundaries between urban and rural areas is important for better predicting and developing strategies for improving local and global air quality.

The Taehwa site, located in a mountainous forest, is the perfect location for addressing questions about how human-caused and natural emissions mix.  The site boasts a 130-foot tower that reaches well above the tree line.  Climbing the steps up the tower affords great views of the forest below and allowed us to see up close the air inlets and instrumentation placed at regular intervals along the tower.

Forest tower
The tower at the Taehwa Mountain Forest Research site. Credit: NASA/Jane Peterson

At the base of the Taehwa tower are several structures filled with a variety of instruments that analyze the air collected at different heights along the tower as well as air collected by inlets at ground level.  These instruments measure different VOCs as well as many other molecules and compounds important for unraveling the complex chemistry occurring at the site. In addition, instruments below the tower also analyze in detail small particles in the atmosphere, counting them and measuring their sizes.  

Research building
Though the outside of this building and its setting look primitive, inside are a suite of sophisticated air quality monitoring instruments. Credit: NASA

In yesterday’s blog, I discussed how the DC-8 flies in spiral patterns to sample the air from near the ground up to 25,000 feet near Taehwa. By flying our KORUS-AQ aircraft near this site, we extend the reach of the air quality measurements from the top of the tower to nearly five miles up in the troposphere.

Aircraft in flight.
NASA’s DC-8 (top center) as seen from the Taehwa Mountain Forest Research tower on May 2 during the first KORUS-AQ science flight. Credit: Saewung Kim, UC Irvine

In addition to air quality and meteorological instruments at the tower, down the hill scientists from NASA Goddard Space Flight Center are measuring ozone above the site with the Goddard Ground-Based Tropospheric Ozone Lidar and with daily launches of balloons carrying instrumentation to measure ozone up into the stratosphere.  The ground-based ozone instrument uses an infrared laser that shines from the top of a trailer up through the lower atmosphere and allows scientists to measure ozone concentrations up to several miles above the ground.  This instrument is similar to the NASA Langley Airborne Differential Absorption Lidar (DIAL) being flown during KORUS-AQ on the DC-8.

Once a day the Goddard team launches a balloon outfitted with instrumentation to measure ozone along with temperature, pressure and humidity.  These ozonesondes collect and transmit the concentration of ozone from the surface all the way up to about 19 miles, when the balloon pops and the ozonesonde falls back to Earth on a small parachute. The team launches an ozonesonde daily and will launch one during every KORUS-AQ flight to provide complementary data of ozone in the atmosphere below and above the altitudes of the planes.

Science instrument rises into the air.
The team from NASA Goddard Space Flight Center launches an ozonesonde into the atmosphere. Behind them is the trailer housing the Goddard Ground-Based Tropospheric Ozone Lidar. Credit: NASA/Steve Cole

After visiting the Taehwa ground site, meeting the students and researchers working there, learning about their instruments, watching an ozonesonde launch into the stratosphere, and climbing up the research tower (which forced me to overcome a slight fear of heights), I was struck by the diversity of people, instruments and platforms (aircraft, ground, balloons, satellites) that have been brought together to try to solve the problem of poor air quality.

A “Clean” Start for First KORUS-AQ Flights

by Emily Schaller / Osan Air Base, Seoul, South Korea /

After years of preparation, on Monday, May 2, the three KORUS-AQ aircraft (NASA B-200, NASA DC-8, and the Hanseo King-Air) took off for their first coordinated science flights over South Korea. More than 50 scientists, pilots and crew from NASA and the Republic of Korea were aboard the three aircraft and flew thousands of miles across the Korean peninsula over the course of eight hours.

Satellite image
Satellite image showing the positions and flight tracks of the three aircraft over the Korean peninsula at 11:30AM Korean Standard Time during the first KORUS-AQ science flights.

The tracks the planes flew were not simple point-A-to-point-B flights. Instead, the scientists designed flight plans that allowed them to sample pollution at many locations, altitudes and times of day. Before every flight, a team of meteorologists and air quality forecasters pour over data from satellites and model outputs to predict the sources, amounts and types of pollution the team may encounter and suggest appropriate flight paths so that the aircraft can best sample this pollution.

The meteorological and pollution conditions on Monday were such that the Korean peninsula was experiencing fairly good air quality. Why bother to fly if our goal is to sample high levels of pollution? This flight provided the team with a great opportunity to set a clean baseline. The relatively clean-air data collected on Monday will be compared to data collected on future pollution-filled flights, allowing the team to understand the full range of conditions on the peninsula.

Using aircraft to study pollution allows scientists to sample the air at multiple altitudes, from near ground level all the way up to about 25,000 feet. One way to do this is by flying ascending and descending spiral patterns as well as flying straight and level legs at several altitudes. We also sample at different times of the day to look at how the chemistry evolves as the day progresses and sunlight drives chemical reactions.

Below is a time-lapse video showing the flight paths of our three aircraft from 8AM- 4PM Korean Standard Time on Monday, May 2:

 

The DC-8 flight plan on Monday included spiral patterns from about 1000 feet all the way up to 25,000 feet near the Taehwa Mountain research forest ground site. This ground site has sensors and many instruments measuring air quality. The reason we do spirals and have a ground site at this particular location is to better understand how human-caused pollution from Seoul mixes and reacts with the natural emissions from trees in the forest. The DC-8 also flew north and south along the peninsula at constant altitudes to map small particles, ozone and hundreds of other chemical compounds at various altitudes along the peninsula. We repeated the spirals near Taehwa three times (morning, noon and afternoon) and also performed two spirals over the ocean to the southwest of the peninsula.

While the DC-8 and Hanseo King Air flew at a variety of altitudes to sample pollution, the NASA B-200 flew at a much higher altitude (28,000 feet), where it collected remote-sensing data from above, simulating data collected by current and future orbiting satellites.

Unlike commercial aircraft flights where the goal is to get from place to place, the goal of research aircraft flights is to safely collect the best possible science data. This means that the people aboard research aircraft often experience very bumpy flights and g-forces that are not normally encountered on commercial aircraft.

During spirals (which can last for more than 20 minutes), the constant ascending or descending when the aircraft is turning in a circle can cause some people to feel queasy. Flying at low altitudes near the surface where the air is unstable can also make for a very bumpy ride. Those aboard are prepared for these conditions and many take anti-nausea medications or wear anti-nausea patches.

On Monday’s flight, however, those on the DC-8 lucked out – though it was moderately bumpy at times and they completed five spirals, the flight was not nearly as nausea-inducing as other air quality sampling flights some had experienced in the past.

Scientists in airplane.
Don Blake and Stacey Hughes (UC Irvine) operate the Whole Air Sampler (WAS) in flight aboard the DC-8. WAS collects air samples in canisters that are analyzed after the flight for their chemical constituents in the laboratory. Credit: NASA/Jane Peterson
Scientist working on airplane.
Jack Dibb (University of New Hampshire) collecting an aerosol particle filter sample from the Soluble Acidic Gases and Aerosol (SAGA) instrument to later analyze in the lab. Credit: NASA/Jane Peterson

The complicated airborne ballet our aircraft danced over the Korean peninsula yesterday could not have taken place without the cooperation of Korean air traffic control authorities.

Flying spiral maneuvers, rapidly changing altitude and repeating flight paths multiple times is very different from how typical commercial aircraft fly.

Our pilots, navigators and mission management worked closely with local air traffic control both before and during the flights to allow our aircraft safe operation in the busy airspace over the Korean peninsula.

“NASA is enormously appreciative for the incredible support we have received from the Korean Civil Air Traffic and the R.O.K. Air Force Air Traffic controllers [ATC],” said NASA atmospheric scientist Barry Lefer. “Our colleagues at NIER [National Institute of Environmental Research] have spent many hours working with the ATC authorities making our flight operations in Korea possible.”

A Couple with Real Atmospheric Chemistry

Husband and wife scientists
Jeong-Hoo Park (right) and Kyung-Eun Min outside NASA’s DC-8 flying laboratory. Credit: NASA / Kate Squires

by Kate Squires / PALMDALE, CALIFORNIA /

They met at an air quality-monitoring site near downtown Seoul over a decade ago. Now the husband-and-wife team of atmospheric chemists are working together on the KORUS-AQ field experiment that gets underway this week in South Korea. Jeong-Hoo Park is the lead Korean scientist for KORUS-AQ and senior researcher at the National Institute for Environmental Research in Seoul. Kyung-Eun Min, assistant professor at the Gwangju Institute of Science and Technology, leads the K-ACES instrument team participating in KORUS-AQ. We caught up with the couple last week at the Armstrong Flight Research Center Hangar 703 in Palmdale as they checked out instruments being installed on NASA’s DC-8 flying laboratory.

What are the big goals of the KORUS-AQ mission?

Jeong-Hoo Park: The first is to inventory South Korea’s emissions. The second is to study the mechanisms that control air pollution in Korea and then create an efficient strategy to improve air quality using policy. The third goal is to improve the country’s air quality forecasting system. The last is to validate sensors and algorithms for a satellite called Geostationary Environmental Monitoring Spectrometer (GEMS) that will monitor air quality from space after it launches in 2019. The satellite will be identical to NASA’s planned Tropospheric Emissions: Monitoring of Pollution (TEMPO).

Can you describe a particularly bad air quality day that you’ve experienced while in South Korea?

Kyung-Eun Min: I was living in California during my PhD program and went back to visit my mom in South Korea during May. I was hanging out with family, and I looked at the sky and noticed it was gray. It was like that all day long. I said to my mom, “Oh it looks like it’s going to rain soon, but it’s not going to rain.” My mom responded. “No, it’s very sunny today! It’s sky blue!” I said, “No, can’t you see that it’s overcast and gray?” That was the first time I ever realized the daily air quality contrast between Korea and the U.S.

Does South Korea have a warning system to alert its citizens of a bad air quality day?

KEM: When I was in graduate school they only had an alert warning for Asian dust events. These days there is also a pollution forecasting and alert system.

JHP: Yes, we have an air quality forecasting system that is managed by the National Environmental Institute of Research and gives a next-day forecast to the public every day via the news networks. The system warns the public so that they can be better prepared and wear a mask if needed.

Jeong-Hoo, how did you get involved and eventually co-lead the KORUS-AQ mission?

JHP: Before working on KORUS-AQ, I worked at National Center for Atmospheric Research in Boulder, Colorado. One day I heard about the mission there and was intrigued, so I decided to move back to Korea to manage the mission about a year and a half ago.

Scientist inspecting instrument
Jeong-Hoo Park tests an air intake probe on the Proton-transfer-reaction mass spectrometer instrument during DC-8 instrument installation at Palmdale. Credit: NASA / Brian Soukup

What has been the most challenging part of planning the KORUS-AQ mission? The most rewarding?

JHP: The most challenging part of planning was gaining consensus between all of the different organizations. For example, I had to convince the Air Force and related organizations for support of the project.

KEM: The most rewarding part is the opportunity to have the mission take place in South Korea. We have never had such a large and complex mission in our country. It is also rewarding to share this opportunity with our students and let them see how we collaborate and how important our work is.

What first got you interested in this area of research?

JHP: When I was an undergraduate student, I took an air pollution class. I saw that there were a few chemical reactions with some equations that expressed a phenomenon in the air and I was very interested in that because it actually expressed things that are invisible to us. I was so excited and I jumped right into it.

KEM: I’ve always liked atmospheric research because it deals with a global issue. Air doesn’t have any social borders. If something major happens to the air in one country, it crosses to other countries so easily and quickly.

Where did you go to school?

JHP: I went to Yeungnam University in Korea for my undergraduate degree and went to Korea University to study atmospheric chemistry. I went abroad to the United States to the University of California, Berkeley and graduated with my PhD from the Environmental Science Policy and Management Department.

KEM: I went to Korea University for both my bachelors and masters science programs in atmospheric chemistry. I went on to UC Berkeley for my PhD and did postdoctoral work at NOAA.

Did you meet at UC Berkeley?

BOTH: No.

JHP: We met before.

KEM: In a field mission in Korea.

JHP: Fourteen years ago, we met at the field site, which is the same as one of the KORUS-AQ ground sites.

KEM: We met when we were in different groups at the Olympic National Park, which was a ground site for another air quality field study but also one for KORUS-AQ. We started to date each other secretly. Then we ended up pursuing our PhDs together at UC Berkeley. So there was some luck to it, too.

Is there any professional competition between you as husband and wife?

JHP: Well, I will say that we are kind of a synergetic couple because the measurements from our instruments are complementary.

KEM: People think we are a good couple so we are good colleagues, and usually we are. When I did nitrogen oxide studies in graduate school, he was studying volatile organic compounds (VOC). They are good ingredients for trying to understand ozone pollution and complex chemistry, and we collaborated well during that time. Now I’m starting to look at oxygenated VOC’s, so I’m very eager to get his data and analyze it. Sometimes we sit down to have a discussion about the data and come to a point where we have slightly different perspectives, so then we argue sometimes.

BOTH: [Laughing]

JHP: There is no competition.

Scientist inspects instrument
Kyung-Eun Min works to make sure the K-ACES instrument is functioning properly before a test flight. Credit: NASA / Kate Squires

Do you typically talk about science at home around the dinner table?

KEM: Some couples that work in the same field will not talk about work at home, but we are not like that. We discuss whatever we want. Sometimes it’s about the science. Sometimes it’s about personal life.

JHP: One time we had lunch with a friend. We were discussing general things about life, but then the conversation turned into us having a deep discussion about science. Our friend said, “Why do you talk about science in the middle of lunch? You both are nerdy!”

Do you have any children?

KEM: We have one son, who is seven months old.

Do you want your son to go into the air quality research field?

KEM: Interesting question. We’ve talked about it a lot. In Korean culture, parents expect a lot of their offspring. If he chose atmospheric science as his field of interest then we would probably be very happy, but we don’t want to pressure him into going that direction.

JHP: I agree. I want him to do anything he wants to do.

How will this research help people today and people in the future?

JHP: I hope that the success of the KORUS-AQ mission will provide data that will lead to better emission policies and the best air quality for the next generation, including my son. I hope it will also help further develop the Korean atmospheric research community and push us towards doing more air quality research studies.

A Conversation with Jim Crawford: The Career Path to Seoul

Jim Crawford

by Denise Lineberry / HAMPTON, VIRGINIA /

A few days before leaving for South Korea and the start of the Korea U.S.-Air Quality study (KORUS-AQ) field campaign, lead U.S. project scientist Jim Crawford, 52, from NASA’s Langley Research Center in Hampton, Virginia, answered a few questions about the mission and his career studying air quality around the world.

How long have you been involved in air quality work?

I have been conducting research in atmospheric chemistry for just over 25 years, but much of my early work was on the remote atmosphere. My focus on air quality and conditions in urban areas has only been over the last five years.

What first got you interested in this area of research?

I entered graduate school at Georgia Tech in 1991 after five years of active duty in the U.S. Army.  To be honest, I was looking for something new and interesting to pursue, and atmospheric science was what caught my eye in the college catalog. I have not regretted what may seem like a whimsical decision.

Can you describe a particularly bad air quality day that you’ve experienced?

Poor air quality is not always obvious to the naked eye, but during a visit to Beijing in 2012, the conditions were so bad that you could not see more than a block down the street. I do not have any allergies, so I am not particularly susceptible to respiratory problems. Even so, I got sick on that trip, and I wonder how much the poor air quality contributed.

How does KORUS-AQ compare to other air quality projects you’ve worked on?

I have been involved in many large field experiments, and KORUS-AQ certainly belongs in that category. I have also experienced a lot of complexity over the years. While the flights in Korea will not be the most complex that I have ever planned, the airspace over Korea is quite challenging to navigate and the international coordination has gone far beyond anything we have attempted in the past.

Where else in the world have you done air quality field work?

I have participated in research flights all over the world and in many different types of aircraft. Much of my early career was spent working on airborne studies over the remote North and South Pacific and along the Asian Pacific Rim, looking at long-range transport of pollution. I have also participated in aircraft flights over Antarctica as well as the Arctic, so my experience has spanned the globe. It is only in recent years that I have become engaged in flights over populated areas where human emissions and poor air quality occur.

What has been for you the most challenging part of planning KORUS-AQ?

The international coordination and negotiation of flight permissions has been a tremendous challenge in the preparation for KORUS-AQ. Never before have we worked so closely with colleagues in another country, nor have we attempted to fly in such busy airspace within the borders of another nation. We’ve built enduring relationships. Airborne observations are sparse, and KORUS-AQ will expand our capability as an international community, leading to better quality and coverage for atmospheric observations to understand air quality, which has become a problem of hemispheric scale.

How do you hope your work will benefit people today or in the next generation?

Our work brings attention to the impacts of human activity on Earth. For today, people need reliable forecasts of air quality, and for tomorrow, they need effective policies to improve air quality. Hopefully, this work adds to the motivation to continue developing and transitioning to energy sources that are free of harmful emissions to the atmosphere. These emissions are the root cause of both poor air quality, which is a short-term impact, and climate change, which is a long-term challenge.

 

 

Preparing for Air Quality Airborne Science

DC-8 Aircraft
NASA’s DC-8 flying laboratory is based at Armstrong Flight Research Center Hangar 703 in Palmdale, California. Credit: NSERC/Jane Peterson

by Kate Squires/ PALMDALE, CALIFORNIA/

There are many layers to orchestrating a mission as complex as the Korean U.S. Air Quality (KORUS-AQ) study, which gets underway next week in South Korea. Preparing the aircraft and science instruments to come together as one is just a single layer, but it’s an extremely important one for ensuring a safe and successful mission.

KORUS-AQ, a joint field campaign by NASA and South Korea’s National Institute of Environmental Research, will combine observations from aircraft, satellites, ships and ground stations to assess air quality across urban, rural and coastal areas of South Korea. These data will help shape the development of the next-generation system of space- and ground-based sensors for air quality monitoring and forecasting.

   Credit: NASA / Brian Soukup

NASA’s DC-8 flying laboratory looks like a normal passenger jet, but it’s far from it. The highly modified aircraft has removable seats, ports and windows. The onboard electronics have also been modified to support a variety of instruments. Despite the many “holes” in the aircraft, the structure is highly stable.

Instrument integration work began a month prior on March 21 when the instruments were shipped to the science lab at Armstrong Flight Research Center’s Hangar 703 in Palmdale. Some of the instruments arrived in pieces and had to be built from the ground up before they were installed. Others arrived fully assembled and only needed to go through power and other system checks before they were ready for installation.

Before loading instruments into the plane, DC-8 quality inspector Scott Silver inspected each of the instruments for “air worthiness” in the science lab. He made sure that each instrument did not emit sparks or smoke or create other hazards that could potentially cause problems during flight.

“Once the instrument is on the plane, it’s not coming off. But we need to make sure it’s safe before we even get to that point,” Silver said.

While the scientists made sure their instruments were functional, aircraft mechanics removed windows on the aircraft and installed a wide variety of air intake probes.  They also installed optical ports into the top and bottom of the plane for laser sensors. After port installation was done, the aircraft looked somewhat like a porcupine.

DC-8 aircraft exterior
Air intake probes protrude from NASA’s DC-8 flying laboratory in place of normal window ports for the Korean U.S. Air Quality (KORUS-AQ) mission. Credit: NASA / Carla Thomas

Each instrument was then rolled out of the science lab and placed on a large scale to be weighed for aircraft weight and balance requirements. From there, each instrument was loaded onto a lift and carried up to the aft doors of the aircraft.

This part was tricky. Cabin space is limited and the payload of 26 instruments is large compared to most DC-8 missions. So instruments had to be loaded in a specific order, starting with the instruments located at the front of the plane. 

Man fixing science equipment
Alan Fried, University of Colorado Boulder, makes an adjustment to the intake for the Compact Atmospheric Multispecies Spectrometer (CAMS) instrument, which will measure formaldehyde and ethane in the atmosphere over South Korea. Credit: NASA / Anna Kelley

Mechanics, avionic techs, data system engineers, and experimenters worked side-by-side to install each instrument without causing delays to the 10–20 instruments in the queue behind them. The experimenters were then free to make sure their instruments were working and communicating with the onboard data system.

After installation, the aircraft was moved outside of the hangar to allow the experimenters to calibrate the instruments. The aircraft was then turned back over to the DC-8 crew who performed necessary aircraft maintenance checks on the engines and cabin pressure.

Blue print plans.
The blueprint plans for integrating the 26 science instruments look daunting, but NASA’s DC-8 crew has a method to the madness. Credit: NASA

“Our primary job at NASA Armstrong is to make sure that all of the experimenters onboard are safe and can focus on collecting as much data as possible,” DC-8 crew chief Corry Rung said.

The final checks happened throughout several short flights. The first on April 15, called a “shake flight,” ensured that none of the instrument hardware was loose and that they all functioned correctly. The second two flights on April 18 and 22 were devoted to testing the science instruments themselves. The DC-8 is slated to leave California for Osan Air Base on April 26.

Airplane cockpit.
Inside the cockpit of the DC-8 during the April 21 science check flight. Left seat pilot, Dick Ewers; right seat pilot, Dave Fedors; and flight engineer Matt Pinsch. Credit: NASA / Carla Thomas

Meanwhile across the country at NASA’s Langley Research Center in Hampton, Virginia, the UC-12B King Air was going through a similar integration process. However, because the King Air has a smaller fuel tank and payload capacity, the aircraft cannot make the transit flight across the Pacific with all of the instruments on board.  

After the science instruments were installed, fitted and checked, they were quickly uninstalled and packed into shipping boxes headed to Osan Air Base. The aircraft was then outfitted with large fuel bladders that will help the aircraft to make the long transit flight. The fuel bladders will be stored inside the aircraft fuselage. Once the King Air aircraft arrives, the crew will reintegrate the science instruments just before the field campaign begins.

Aircraft science instruments
Johnathan Hair, NASA Langley Research Center, tests the DIAL UV instrument during a science check flight. DIAL UV measures ozone and also simultaneously measures aerosols and clouds. Credit: NASA / Carla Thomas

The King Air departed Langley Research Center on April 18 and will make stops at Ames Research Center in California, Anchorage, Alaska, Adak Island (Aleutian Islands) and Kadena Air Base in Japan. The aircraft is scheduled to arrive at its destination at Osan Air Base on April 25.

 

Into the Final Turn: From Cold to Colder

Aircraft takes off from runway
NASA’s G-III, outfitted with the GLISTIN-A interferometry radar on the bottom of the fuselage, takes off from Keflavik, Iceland on the morning of March 28, 2016, on its way to map Greenland glaciers and land in Thule, Greenland.

by Patrick Lynch / KEFLAVIK, ICELAND /

On Monday morning, the Oceans Melting Greenland (OMG) team left the chill of Keflavik (32 degrees Fahrenheit but with a relentless, stinging wind) for the more ruthless cold of -8 degrees Fahrenheit in Thule, Greenland.

Before landing, the seven-person team will fly over coastline near Thule today to map glaciers where they meet the sea. After today, the team will make three more science flights to complete mapping the entire Greenland coastline – this information about the heights of hundreds of glaciers will form the baseline for the next five years of study, providing new insights into the ice sheet’s contribution to sea level rise.

Greenland map
NASA’s Airborne Science Program flight tracker shows the G-III on its way from Keflavik to Thule on March 28. Track all NASA Earth science flights with the flight tracker here: airbornescience.nasa.gov/tracker/
HQ_OMG_03282016_OMGcrew
The OMG team in Keflavik (from left): mechanics Angel Vazquezz and Mike Brown, Johnson Space Center; radar engineers Tim Miller and Ron Muellerschoen, Jet Propulsion Laboratory; pilot Dick Clark, Johnson Space Center; flight crew Rocky Smith, Johnson Space Center; and pilot Tom Parent, Johnson Space Center.

Halfway Around Greenland – So Far

Scientist and pilots aboard NASA’s Gulfstream-III aircraft.
Principal Investigator Josh Willis (center) joins Tom Parent (left) and Dick Clark as they pilot NASA’s Gulfstream-III over the eastern coast of Greenland on Thursday, March 24.

by Patrick Lynch / KEFLAVIK, ICELAND /

Oceans Melting Greenland (OMG) will pave the way for improved estimates of sea level rise by investigating the extent to which the oceans are melting Greenland’s ice. OMG will observe changing water temperatures and glaciers that reach the ocean around all of Greenland from 2015 to 2020.

It’s a “hard down” day in Keflavik. The plane, pilots and crew are on the ground to plan future flights, process reams of data and decompress after seven straight days of flying that began with a transit from the U.S. to Greenland.

Days in the field last well beyond an eight-hour workday, and require switching back and forth from long-term planning, to near-term decision making, to handling the in-the-moment work of flying or maintaining the plane or operating the radar and flight systems.

“All together, it’s about all you can do in a day,” said pilot Dick Clark, who is based at Johnson Space Center.

That work, though, is paying off. The OMG team has flown over about half of Greenland’s coastline in its science flights to date, gathering data that will lay the foundation for the next five years of field work and for improved knowledge of Greenland’s contribution to sea level rise.

Map showing Greenland's glacier movement.
This map shows all the flight lines the OMG crew has flown since last week. The lines are laid over a map showing glacier velocity, with purples and blues representing the fastest-moving glaciers.

In the next few days, the team will continue with flights from Iceland and then several flights from Thule, Greenland. Ultimately, they will cover the whole coastline of the massive island, which is three times the size of Texas. From next year until 2020, the team will fly the exact same flight lines. Five years of consecutive radar measurements will tell scientists which glaciers are thinning and by how much.

Greenland from the air.
A view from NASA’s Gulfstream-III on the March 24 flight over eastern Greenland.

The next flight on Saturday, March 26 will take the crew to the northeast coast of Greenland. Today? Data, email and rest.