Top Space Station Research Results Countdown: Five, Pathway for Bacterial Pathogens to Become Virulent

In today’s A Lab Aloft entry, International Space Station Program Scientist Julie Robinson, Ph.D., continues her countdown to the top ten research results from the space station, recently presented at the International Astronautical Conference in Beijing, China. Be sure to check back for daily postings of the entire listing.

We’re at the halfway point for my top ten research results for the International Space Station. As we kick off the second portion, I hope you have already learned something new to take home about our amazing orbiting laboratory.

Number five on our countdown is the pathway for bacterial pathogens to become virulent, in this case Salmonella. This is a topic that you may have heard about, because it was published in the Proceedings of the National Academy of Sciences. It has been heavily discussed by some of our stakeholders; the original discovery came from some human research focused investigations.

 

An example of Salmonella invading cultured human cells. (Rocky Mountain Laboratories, NIAID, NIH)
An example of Salmonella invading cultured human cells. (Rocky Mountain Laboratories, NIAID, NIH)

There was some indication from ground research that certain bacteria might become more pathogenic (more able to cause disease) when they went into space, in particular Salmonella bacteria. Salmonella infections results in 15,000 hospitalizations and 400 deaths annually in the United States. Cheryl Nickerson, Ph.D., from Arizona State University proposed to NASA that it may be good to look at this to find out if there was an increased risk for food borne illnesses in astronauts. NASA’s human research program funded the first study to fly these bacteria into space.

What researchers found was that the bacteria did become more able to cause this disease. More importantly, however, they identified the genetic pathway that was turning on in the bacteria, allowing the increased virulence in microgravity. This pathway had to do with the way that ions pass through the culture media. In a later study funded by NASA’s space life and physical sciences project, Nickerson was able to fly media that did not have those ions, and then control whether or not that bacteria became more or less virulent.

 

A photomicrograph of Salmonella bacteria. (Pacific Northwest National Laboratory)
A photomicrograph of Salmonella bacteria. (Pacific Northwest National Laboratory)

 

Astronaut Shane Kimbrough works with a Group Activation Pack (GAP) aboard the space shuttle Endeavour during an assembly mission to the International Space Station. (NASA)
Astronaut Shane Kimbrough works with a Group Activation Pack (GAP) aboard the space shuttle Endeavour during an assembly mission to the International Space Station. (NASA)

This is a great piece of scientific research showing the importance of doing biology experiments in this unique environment. There was a time when I would have had one of my top results be the possibility of developing vaccines on the ground—a private company did some additional studies in this area on the space station. Developing new medical treatments can take years, though, and have a lot of ups and downs. Right now that doesn’t appear to be developing as quickly as one might have hoped, so the jury is still out on the final benefit. Still, the core discovery here remains significant.

Scientists are working through other species of bacteria now, trying to understand if this is a common pathway. If so, how can we use it to increase or return benefits back to Earth, and can this new knowledge be used to help fight disease? Nickerson and colleagues continue to work on these questions, using the important discovery of this new pathway found through space station investigation.

Julie A. Robinson, Ph.D.
International Space Station Program Scientist

Top Space Station Research Results Countdown: Eight, Hyperspectral Imaging for Water Quality in Coastal Bays

In today’s A Lab Aloft entry International Space Station Program Scientist Julie Robinson, Ph.D., continues the countdown to her top ten research results from the space station, recently presented at the International Astronautical Conference in Beijing, China. Be sure to check back for daily postings of the entire listing.

Number eight on my list of the top ten research results from the International Space Station is hyperspectral imaging for water quality in coastal bays. This is an important research result because it shows the value of the space station as an Earth remote sensing platform. In this case, the space station hosts an instrument called the Hyperspectral Imager for the Coastal Ocean (HICO).

Data from the Hyperspectral Imager for Coastal Oceans (HICO)—pictured here as installed on the Japanese Experiment Module Exposed Facility—used in concert with field data can help researchers better understand and communicate coastal water quality. (NASA)
Data from the Hyperspectral Imager for Coastal Oceans (HICO)—pictured here as installed on the Japanese Experiment Module Exposed Facility—used in concert with field data can help researchers better understand and communicate coastal water quality. (NASA)

This imager gets data on the wavelengths of light that it measures reflecting back from the surface of the Earth. It is particularly tuned to get hundreds of bands, much more than the eight different bands you would usually get from a remote sensing instrument like Landsat. These hundreds of different bands can be teased apart for details and information that you can’t get from normal remote sensing data.

For example, using HICO you can distinguish between sediment and chlorophyll in the water column. Chlorophyll, which is a sign of algae, is an indicator that nitrogen is flowing in—say from fertilizers on the land. That is an important marker of water quality issues. In a sediment-laden bay, however, it can be really difficult to differentiate between the two—often called the “brown water” problem by ocean remote sensing experts.

The U.S. Environmental Protection Agency (EPA) findings may allow coastal ecosystem researchers to keep up with changes in water quality in near real time using HICO's data, instead of having to send scientists into the field, as pictured here. (EPA/Darryl Keith)
The U.S. Environmental Protection Agency (EPA) findings may allow coastal ecosystem researchers to keep up with changes in water quality in near real time using HICO’s data, instead of having to send scientists into the field, as pictured here. (EPA/Darryl Keith)

The U.S. Environmental Protection Agency (EPA) used HICO to develop a proof-of-concept to help monitor and protect our water supplies as required by the nation’s Clean Water Act. The work was originally funded by the EPA under a Pathfinder Innovation Project Award. The results were honored with a top research application award at the 2013 International Space Station Research and Development Conference. Darryl Keith, Ph.D., accepted the award on behalf of his research team regarding their work using HICO to gather imagery for ocean protection for the EPA.

EPA researchers went out and timed collections of their field observations with an over-flight of the space station. The scientists were able to put the data together to get better measurements for dissolved organic matter and chlorophyll A. This allowed them to develop models that suggest the presence of algal blooms, which present a danger to the health of sea life.

Map of chlorophyll-a for Pensacola Bay derived from HICO data. Higher values (yellow and red) indicate high chlorophyll concentrations in the water that suggest algal blooms are present. (EPA/Darryl Keith)
Map of chlorophyll-a for Pensacola Bay derived from HICO data. Higher values (yellow and red) indicate high chlorophyll concentrations in the water that suggest algal blooms are present. (EPA/Darryl Keith)

With the HICO proof-of-concept in hand, EPA researchers now are interested in using these models to develop an app that anyone can use to obtain real-time water quality information. The goal is to have algorithms that don’t require coordinating the space station or satellites with field data. The success of such a venture would mean real-time updates without anyone having to go into the field. This kind of an application developed by another government agency is really important for showing the broad value of the space station.

HICO has been converted into a space station facility, with open access for both users funded by NASA’s Earth Science Division, and also commercial users sponsored by the Center for the Advancement of Science in Space (CASIS) to use space station as a National Laboratory. Both organizations have announced opportunities to use the instrument. This is just the first of a number of remote sensing instruments headed for the space station that will transform the way this orbiting laboratory serves our need for data about the Earth below.

Julie A. Robinson, Ph.D.
International Space Station Program Scientist

Top Ten Space Station Research Results Countdown: Ten, Preventing Loss of Bone Mass in Space Through Diet and Exercise

In today’s A Lab Aloft entry, International Space Station Program Scientist Julie Robinson, Ph.D., continues her countdown of the top ten research results from the space station, recently presented at the International Astronautical Conference in Beijing, China. Be sure to check back for daily postings of the entire listing.

This topic of research is the culmination of years of study, starting with the very first International Space Station flight investigation into the loss of bone by astronauts. During the first part of space station history, astronauts were losing about one and a half percent of their total bone mass density per month. That’s a rate similar to a post-menopausal woman’s bone loss for an entire year—which is really significant.

Quantitative computed tomography (QCT) images of hip bones. (T. Lang, University of California, San Francisco)
Quantitative computed tomography (QCT) images of hip bones. (T. Lang, University of California, San Francisco)

Early space station researchers first identified this loss rate. Then they found that the exercises we were having the crew perform were not really providing the right forces to counter the bone mass reduction. Scientists started looking at crew member diet and exercise routines, along with the addition of upgraded exercise hardware. This progression culminated in the September 2012 publication in the Journal of Bone and Mineral Research.

Scientists found that the correct mixture of set durations of high-intensity resistive exercise, combined with the right amount of dietary supplementation for vitamin D and specific caloric intake were key for bone health. With all of these things together, the astronauts could return to Earth after living in space without having lost significant bone mass. This is just one solution; there may be others. But this is a viable answer to an issue identified clear back during the Gemini missions, addressing a huge problem when humans go into space and lose gravity loading on their bodies.

Astronaut Lee Archambault, commander of the STS-119 mission, conducts an Advanced Resistive Exercise Device (ARED) workout in the Unity node aboard the International Space Station. (NASA)
Astronaut Lee Archambault, commander of the STS-119 mission, conducts an Advanced Resistive Exercise Device (ARED) workout in the Unity node aboard the International Space Station. (NASA)

With this research, we can better understand how bone changes throughout life, in growth and aging, and how to prevent outcomes such as age-related bone fractures. This topic received an award at this year’s International Space Station Research and Development Conference, recognizing the community of NASA and academic scientists for carrying out research to define the extent and characteristics of bone loss in spaceflight, and for developing exercise- and drug-based approaches to attack the problem. Thomas Lang, Ph.D., professor of Radiology and Biomedical Imaging at the University of California San Francisco, was the recipient of the team award in recognition of outstanding results on preventing bone loss in long-duration spaceflight.

This is important of course for future exploration by astronauts, but also for patients on the ground. The paper made the cover of the Journal of Bone and Mineral Research, due to the fact that it provides a very different way of looking at bone loss from what is typical in the osteoporosis research community.

When most women are diagnosed with osteoporosis, the next thing their doctor will tell them is: “Well, stay active, go walking, but don’t do anything too rigorous.” We found that by doing rigorous exercise, however, astronauts that don’t have other kinds of health issues were able to protect their bone. It’s going to take some time for the medical community to absorb how these results with astronauts might be applicable to others, especially those on the ground. This is a compelling result for the whole world, because it gives us insights into how bone is formed and maintained in the human body that could not have been obtained any other way.

Julie A. Robinson, Ph.D.
International Space Station Program Scientist

Sowing the Seeds for Space-Based Agriculture – Part 2

In today’s A Lab Aloft, Charlie Quincy, research advisor to the International Space Station Ground Processing and Research director at NASA’s Kennedy Space Center in Florida, continues to share the growing potential of plants in space and the new plant habitat that will help guide researchers.

As astronauts continue to move away from Earth, our ties back to our planet are going to be strained. We won’t have the capability to jump into a return capsule and be back to Earth in 90 minutes.

To move further away from Earth, we have to continue to develop more autonomous systems in our spacecraft that supply our fundamental needs for oxygen production and carbon dioxide (CO2) removal, clean water and food. The genetic coding in plants to perform these functions has been refined and improved for the past 3-4 billion years as plants have continually evolved on Earth. So the code is pretty good. As long as we can provide biological organisms like plants or algae with the nutrients and support systems they need, they will pretty much know what to do. What they will do is clean water, change CO2 into oxygen and generate food. From a life support system, that’s kind of what you want to happen.

There are some interesting things about plants that we’ll have to deal with in space. For instance, we don’t have bumblebees in orbit, so who does the pollination? Who goes from flower to flower? We’ve actually had astronauts using cotton swabs to move pollen from one flower to another, in particular when we were growing strawberries a few years back. As we get more and more into it, we need to figure out how to do this without using the crew, since it would not be efficient to have them pollinating a field with cotton swabs.

Plant Blog B_1
View of willow trees in an Advanced Biological Research System (ABRS) incubator for the Advanced Plant Experiments on Orbit – Cambium (APEX-Cambium) experiment aboard the International Space Station during Expedition 21. (NASA)

We have quite a number of things going on and coming to fruition on the International Space Station. We currently have a small habitat called the Advanced Biological Research System (ABRS) in orbit performing fundamental studies of plant growth in the microgravity environment. It has two independent chambers that are tightly controlled and have LED lights. We can manage moisture delivery, CO2 and trace gases inside those chambers and do some real hard science investigations. The Russian segment has a habitat, too, called the Lada greenhouse.

The Advanced Plant Habitat (APH) is a similar chamber under development, but that one will be larger. The APH will enable us to use larger plants and different species, all of which will be tightly controlled during growth investigations.

Another really exciting new system launching to the space station probably around the middle of next year is the Vegetable Production System (Veggie). It will begin bridging the gap between a pure science facility and a food production system. We are in the ground testing phase of the flight unit to assure it is safe for operation aboard the station with the help of the facility’s builder, Orbital Technologies Corporation of Madison, Wis. Orbitec. They also will manufacture the APH.

The beauty of the Veggie unit is that it’s really just a light canopy with a fan and a watering mat for growing plants, using the cabin atmosphere aboard the space station. The crew will have an opportunity to farm about two and a half square feet, which is a pretty good sized growing area. This system also has great potential as a platform for educational programs at the high school level, where students could grow the same plants in similar systems in their classrooms.

Plant Blog B_2
The Veggie greenhouse will fit into an EXPRESS Rack on the International Space Station for use with plant investigations in orbit. (NASA)

We’re going to start growing lettuce plants in Veggie next year as a test run, because lettuce is well suited for this initial testing. Lettuce is a good first crop selection because it is a rapid growing plant, with a high edible content, and generally has a small micro flora content.  We will be using specially designed seed pillows to contain the below ground portion of the lettuce plant containing the roots, rooting media, and moisture delivery system. The plants will sprout and grow up through those pillows. Ultimately scientists will be able to grow larger plants like dwarf tomatoes or peppers.

We are continuing to do the testing associated with making sure the food grown in the closed environment of the space station is safe to eat for the crew. We hope that within a short period we will be able to augment the astronauts’ diets with herbs and spices and maybe onions, peppers or tomatoes, something to give the crunch factor. Ultimately, we hope to move to even larger chambers to begin producing more of the staple crops, such as potatoes or beans.

All of these new plant systems should be up and running in the very near future. Veggie should be aboard station next year, and by the middle of 2015 we expect to deploy the APH, completing the suite of plant facilities in orbit.

When talking about life-support systems for spaceflight, there’s obviously a more complicated viewpoint that says the systems that connect all that together are pretty elaborate and cumbersome. There are reservoirs, hoppers and a vast array of other things that have to be in place to operate a bioregenerative system, which makes them big and, in some cases, energy intensive. On short-duration missions we would probably do better packing a picnic lunch and taking only the support systems we need. The further we are away from Earth, and the longer it takes us to get back, however, drives systems planning in the regenerative direction. What we’re doing is laying the groundwork that will enable those kinds of decisions to be made for long-duration exploration.

Plant Blog B_3
NASA astronaut Mike Fossum, Expedition 28 flight engineer, inspects a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload with its Lada-01 greenhouse in the Zvezda service module of the International Space Station. (NASA)

There’s a more near-term thing that we’re also looking at, which is the therapeutic aspects of growing plants. People have been exercising their “green thumbs” for this reason for years. They plant their little gardens, and the aromas of plants have a very positive impact on the way these people feel about things. The psychological effects of keeping plants are still somewhat unknown, and we’re hoping to get better insight into that. These effects include the nurturing aspects of watching something grow and caring for it. During spaceflight, far from Earth or on a long-duration mission, a totally sterile environment may not be what is desired. While you can’t have a pet dog or cat to make your living space a little more homey, perhaps you could have a pet plant to care for, as it provides oxygen and sustenance.

Charlie Quincy has been the Space Biology project manager at Kennedy Space Center for the past 13 years. His efforts include both flight and ground research aimed at expanding the current science knowledge base, solving issues associated with long-duration spaceflight and distributing knowledge to Earth applications. He is a registered professional engineer and has a master’s degree in Space Technologies.