The Tool to Fill the Gaps of our Senses: AMS

In today’s A lab Aloft blog entry, International Space Station Associate Program Scientist Tara Ruttley shares her point of view on the importance of asking the big questions via station research.

When I do public speaking events, people always ask me what’s my favorite investigation. For me it’s usually the Alpha Magnetic Spectrometer, or AMS investigation. This incredible instrument is a particle physics detector mounted to the outside of the International Space Station. The AMS was developed by Professor Samuel Ting, a Nobel Laureate in physics, along with an international collaboration of 16 countries organized by the U.S. Department of Energy.


Estimated distribution of dark matter making up 22 percent of the mass of the universe and dark energy making up 74 percent, with ‘normal’ matter making up only 0.4 percent of the mass of the universe. (NASA)

The goal of AMS is almost like sci-fi, involving the search for dark matter, dark energy, antimatter, and even something called strangelets. You hear about these things growing up and on TV and you wonder, is that real? If you go past the scientific jargon, the purpose of AMS is to answer a fundamental question in our nature. To ask, as we have from the beginning of time, how did the universe begin?

The answer to this question intrigues me, like everyone else, because it inevitably addresses “who are we and what are we doing here?” Everybody would love to know, so we seek the answers the best way that we humans can: pushing technology limits to find evidence in ways that our own human senses cannot.

The researchers behind AMS are trying to get solid data to support one of the more prevalent theories: the big bang. In a nutshell, this theory says that the universe came together, particles condensed, and boom! You got us. It’s a little more complicated than that, but the theory behind it is that for the big bang to even occur, you had to have equal parts matter and antimatter.

Matter is something we can see and feel, it’s all around us and makes up everything. It’s so very obvious! Antimatter is a little more tricky for us. It is the opposite of matter and we can theorize that it exists and even make small, fleeting samples in laboratories. And so we are using AMS to look for these things that we mere mortals aren’t capable of perceiving for ourselves.

AMS’s space shuttle-mounted predecessor actually found evidence of antimatter a few years ago, so we are only teased by this potential and are now prompted to capture the particles in greater, consistent amounts for study. Now we’re ready to collect lots of evidence for antimatter levels that will keep Nobel laureates, post-docs, and graduate students busy analyzing for years. Since its installation on station, which marked a one year anniversary on May 19, AMS has been collecting about a billion observations per month and even the smallest bits of data are going to lead to hundreds of publications. These will cite the importance of AMS findings with a relevance that likely only super smart astrophysicists will understand, and that the rest of us will see in headlines here and there as new evidence unfolds.


A close view of the Alpha Magnetic Spectrometer-2, or AMS, in the space shuttle Endeavour’s payload bay prior to being mounted to the International Space Station’s starboard truss. (NASA)

Using AMS, we record as much data as we can and analyze it here on Earth. This is where we try to tell an ultimate story with it. It’s what we do in science: chip away at a question until we can come to a conclusion that is always just beyond the next discovery. Yet, as exciting as the headlines will be, I actually tend to struggle with what’s next on these findings. I struggle because, since as we gain bits and pieces of knowledge, inevitably we learn not only what we didn’t know, but how much more there is to know.

Can you sense my impatience and excitement?

Observing antimatter is the first data goal that goes back to the big bang theory. The next data set AMS looks for is dark matter or dark energy, which is fun for me because it further proves that there’s more out there than meets the eye. We humans have senses for sight, sound, smell, taste, and touch, but we are limited to the capability of our receptors as we constantly take in our environment. We miss things that could be right there in front of us.

One of the limits of our eyesight, for instance, is that we can only see a certain spectrum of light. We don’t see the ghastly amounts of waves that pass all around us as our wireless devices talk to each other, or our radios blare during our morning jog. Our eyes see only 5 percent of the universe! We can sense that the other 95 percent of the universe exists, however, because we have found tantalizing evidence through research. We are using AMS as an extension of ourselves to fill in the gaps of our senses and help us understand the unknown. This includes the parts that we don’t even know we don’t know yet.


The starboard truss of the International Space Station is featured in this image, including the Alpha Magnetic Spectrometer-2, or AMS, at center left. (NASA)

AMS also is looking for evidence of a type of matter called strangelets. Yes, it does sound … well … strange. This would be a new form of matter that we have theorized existence of, but haven’t found in nature quite yet.

We’re taught in school that all matter is made of atoms, which we thought were the smallest form of matter. Now scientists are finding that atoms are made of even smaller quarks, and the prevailing theory regarding quarks is that there are six different types in the universe. We have classified all matter on Earth as being made up of only three types of quarks. So why does nature need the additional three? Some scientists theorize that there are other forms of matter out there that would be made up of a combination of these six quarks, and they’re calling them strangelets. It is a creative effort to try to answer what and where these strangelets are. Scientists have created such evidence as “strange” and “antistrange quarks” in heavy ion accelerators, which they theorize could lead to strangelet formation, but as of now, a strangelet is still a hypothetical particle. The prospects are endless.

Only the space station is capable of supporting the power and data transfer AMS requires to look for evidence of antimatter, dark matter, dark energy, and strangelets, and it will keep the scientific community busy for years. The human species develops tools like AMS to find the things we might otherwise miss, because we seek answers — lots of answers. It’s our nature.

AMS is an instrument that is taking it all in and ultimately it’s humans who will try to make sense of the information and apply it to what we know or think we know. We’ll learn what we didn’t know and try to tell our own local story. As we advance as a species, we build on that knowledge that may one day expand with the universe, beyond our little planet. It’s a good time to be a science geek.


Tara Ruttley, Ph.D.
(NASA Image)

Tara Ruttley, Ph.D., is Associate Program Scientist for the International Space Station for NASA at Johnson Space Center in Houston. Ruttley previously served as the lead flight hardware engineer for the ISS Health Maintenance System, and later for the ISS Human Research Facility. She has a Bachelor of Science degree in Biology and a Master of Science degree in Mechanical Engineering from Colorado State University, and a Doctor of Philosophy degree in Neuroscience from the University of Texas Medical Branch. Ruttley has authored publications ranging from hardware design to neurological science, and holds a U.S. utility patent.

Ringing Out 2012 by Chiming in on International Space Station Achievements

In today’s A Lab Aloft International Space Station Program Scientist Julie Robinson looks back at the year in review for research aboard the orbiting laboratory.

As the year comes to a close, I like to take a moment to look back at all the amazing accomplishments from the previous twelve months for the International Space Station. There are lessons to be learned and goals to be evaluated as part of planning for the new year. But this is also a time to enjoy achievements and strides made via this orbiting laboratory in research, technology and education.

Keeping a Helpful Eye on Earth

The vantage point of station offers not only an impressive view of our planet, but the chance to capture and study important aspects of the Earth’s atmosphere, waters, topography and more. The 2012 arrival of the ISS SERVIR Environmental Research and Visualization System, known as ISERV, will enhance the viewing capabilities from orbit used to support disaster assessment, humanitarian assistance and environmental management.

This year an externally-mounted station instrument contributed to the Environmental Protection Agency’s goal of monitoring and improving coastal health. The same Hyperspectral Imager for the Coastal Ocean, or HICO, also assists the National Oceanic and Atmospheric Administration, or NOAA, with scans to determine depth below murky waters, bottom type, water clarity and other water optical properties.

Assisting with disaster response became the secondary mission for the International Space Station Agricultural Camera, or ISSAC. This imager was originally intended for agriculture vegetation surveys to assist with crop and grazing rotation. When that primary science objective ended, the camera became part of the space station’s response efforts for global disasters as part of the International Disaster Charter.


Map of chlorophyll-a for Pensacola Bay derived from HICO data. Higher values (yellow and red) indicate high chlorophyll concentrations in the water that suggest algal blooms are present. Algal blooms can reduce oxygen levels in the water, leading to fish and other animal kills. Some algal blooms also contain organisms that produce toxins harmful to other life, including humans. (EPA)

Inspiring Future Generations

This year NASA’s continued support in educational areas of science, technology, engineering and math (STEM) led to some exciting student-based activities and resources. With the Student Spaceflight Experiment Program, or SSEP, for instance, 15 investigations were selected from close to 800 proposals of student inspiration and design. The results from these studies will be shared at the national conference held each year in Washington DC.

The YouTube Space Lab competition provided another opportunity that caught the attention and imagination of students around the world. Two investigations were selected as winners from more than 2,000 video submissions and many tuned in to watch as the experiments were conducted by astronauts live on orbit.

You can read about all of the education activities available to students to participate in space station science in our recently published “Inspiring the Next Generation: International Space Station Education Opportunities and Accomplishments, 2000-2012.” This retrospective book details station activities involving more than 42 million students and 2.8 million teachers across 48 countries from 2000 to 2012.


Joseph Avenoso (left), Gage Cane-Wissing (right), and Adam Elwood (not pictured), presented their findings on bone loss in microgravity as part of the 2012 SSEP National Conference. (NCESSE/Smithsonian)

Technology Testbed

The space station plays an important role as a microgravity testbed for emerging technologies. The JEM-Small Satellite Orbital Deployer, or J-SSOD, for instance, operated for the first time in 2012, launching multiple small satellites into orbit. This new capability provides a reliable, safe and economically viable deployment method for releasing small satellites, in addition to enabling the return samples to the ground for analysis.

Another exciting technology tested on station is the Robotic Refueling Mission, or RRM, which may help support future space exploration using advanced robotics to service vehicles and satellites in orbit. This capability does not currently exist, but is essential to long-duration exploration missions of tomorrow.


JAXA astronaut Aki Hoshide preparing the JEM Small Satellite Orbital Deployer aboard the International Space Station. (NASA)

Exciting Discoveries for Human Health and Science Disciplines

Findings from station investigations are impacting human health both here on Earth and in orbit. For instance, recently published results related to bone health showed that a combination of nutrition, Vitamin D supplements, and high-intensity resistive exercise help the crew to preserve bone mass density without the need for pharmaceuticals. These findings also apply to the development of treatments for osteoporosis patients here on Earth, an estimated 44 million in the United States alone.

Crew health was highlighted in vision studies in 2012, as well, with the publication of two results papers focused on the impact of microgravity on astronaut vision changes. Research found that significant vision loss in 20 percent of crew members may derive from a combination of the spaceflight environment and changes in metabolism, with an enzyme related to cardiovascular health potentially playing a role.

A discovery of “Cool Flames” caused excitement in the physical sciences community this year. These low-temperature flames ignite via chemical reactions from fuel vapor and air, burning invisible to the eye. This knowledge can help with improving fire safety in orbit, but also has implications for cleaner and more fuel efficient combustion in engines here on Earth.


A burning heptane droplet during the FLEX investigation on the International Space Station. (Credit: NASA)

Ringing in the New Year

Looking forward to 2013, there are still so many exciting things to learn in the various disciplines studied aboard station. Whether in biology and biotechnology, Earth and space science, human research, the physical sciences or even technology developments, there remains a huge potential for discovery. The advent of updated and new facilities planned for the station will help enable investigators in their research in these areas.

Along with the research taking place aboard station, we continue to see Earth benefits that derive either directly or as a spinoff of station science. I look forward to continuing to share these findings and stories with you in the coming year and through the lifetime of this amazing microgravity laboratory.

Julie A. Robinson, Ph.D.
International Space Station Program Scientist

 

SAGE Wisdom for Atmospheric Research

In today’s A Lab Aloft, guest blogger Kristyn Damadeo shares the history of the SAGE investigation, scheduled for future use on the International Space Station. This technology can help researchers to better understand Earth’s atmosphere makeup, especially the health of our ozone layer.

The International Space Station houses some unique experiments and soon it will be home to an exciting new Earth science mission: SAGE III, the Stratospheric Aerosol and Gas Experiment III.

SAGE III mounts externally to the space station and is a mission to study Earth’s atmosphere sponsored by the NASA Science Mission Directorate and led by NASA Langley Research Center. It will be the first Earth-observing instrument of its kind aboard station, taking accurate measurements of the amount of ozone, aerosols—tiny particles—water vapor and other key components of Earth’s atmosphere.

The SAGE Legacy

SAGE III is the first of its kind to operate on station, but the SAGE family of instruments has been taking atmospheric measurements for more than 30 years. SAGE III is the fourth generation in its family operated by NASA.

The artwork above belongs to the SAGE III instrument, which is part of a family of SAGE technology developed to help research Earth’s atmosphere. (NASA Image)

The first SAGE instrument was flown on a satellite in 1979. SAGE I was a sun photometer that used solar occultation—a measurement technique using the sun as a backlight—to gather information on aerosols and important stratospheric gases in the atmosphere. SAGE I collected valuable data for nearly three years, until the power system on the satellite failed.

With SAGE I came the start of a global database for stratospheric aerosols, ozone, and nitrogen dioxide that is still used in the study of global climate. While SAGE I was active, it provided crucial input into the understanding of global, seasonal and inter-annual variability in climate and, in particular, trends in stratospheric ozone.

SAGE I was followed by SAGE II in 1984. SAGE II data helped to confirm human-driven changes to ozone and contributed to the 1987 Montreal Protocol, which banned the use of chemicals that harm the ozone layer. SAGE II lasted 21 years on orbit, allowing us not only to determine the initial extent of ozone changes, but also to measure the effectiveness of the Montreal Protocol. SAGE II saw ozone stop decreasing and begin to recover during its time on orbit.


Engineers at NASA Langley work in a clean room with the SAGE III instrument. (NASA Image)

Then in the late 1990s, SAGE III was developed by Ball Aerospace and Technology Corp. The first of the instruments was launched in 2001 on a Russian satellite, METEOR-3M. The second instrument was stored for a future flight of opportunity. The third was removed from storage and prepared for flight on the space station. The mission will enable researchers to fill an anticipated gap in ozone and aerosol data in the second half of this decade.

Ozone

SAGE III will study Earth’s protective ozone layer from aboard station. Ozone acts as Earth’s sunscreen. When ozone starts to break down, it impacts all of Earth’s inhabitants. Humans, plants and other animals are exposed to more harmful rays from the sun. This can cause long-term problems, such as cataracts and cancer in humans or reduced crop yield in plants.

When SAGE III begins making measurements from the space station in late 2014, some models predict that stratospheric ozone should have recovered by 50 percent. The precise pattern of ozone recovery measured by SAGE III will help improve the models and refine our understanding of the atmosphere.


Particles in the upper Earth’s atmosphere cause the blue layer shown in this image of a sunrise taken from aboard the space station. SAGE III will measure these atmospheric gases from a similar perspective. (NASA Image)

Measurement Technique

SAGE III takes its measurements using solar and lunar occultation. Occultation is a technique for pointing and locking onto the sun or the moon and scanning the limb—thin profile—of the atmosphere as the sun or moon rises or sets. SAGE III will operate mostly autonomously and the data will be transmitted to the ground through the space station’s communications systems.

The space station provides the perfect orbit from which to take measurements of the composition of the middle and lower atmosphere. Our location aboard station also gives us a great view for our solar/lunar occultation technique.

Back in Action

SAGE III is scheduled to launch to the space station aboard a SpaceX Falcon 9/Dragon in mid-2014.

The SAGE III suite consists of a sensor assembly that has pointing and imaging subsystems and an ultraviolet/visible spectrometer; an European Space Agency- provided hexapod pointing system and a nadir viewing platform. The Canadian Space Agency-provided robotic arm will robotically move SAGE III from the Dragon trunk and install it on the Earth-facing side of the EXPRESS Logistics Carrier-4, or ELC 4, storage platform. 

The graphic above depicts the SAGE III instrument, which will collect data to help researchers better understand Earth’s atmosphere. (NASA Image)

The research results of the space station-mounted SAGE III will provide insights that will help humans better understand and protect Earth’s atmosphere. Only by understanding these changes will we be able to mediate future impacts on our environment. Much more data and research is needed to better understand and quantify our impact on our world’s climate system.

The SAGE program has a long heritage and is one of NASA’s longest running Earth-observing programs. Continuous long-term data collection is necessary to understand climate. Once it is on the space station, SAGE III will help to extend a long record of atmospheric measurements for the continued health of our Earth. The observations of SAGE III from station are crucial for providing a better understanding of how natural processes and human activities may influence our climate.

SAGE has been pivotal in monitoring ozone and making accurate measurements of the amount of ozone loss in Earth’s atmosphere. Today, the SAGE technique is still the best for the job. Although new technologies have come along to measure ozone, none are as thorough as solar occultation. Through this dataset, SAGE on the station will enhance our understanding of ozone recovery and climate change processes in the upper atmosphere. We also extend the scientific foundation for further sound decisions on environmental policy, both nationally and internationally.


Kristyn Damadeo is the Education and Public Outreach Lead for SAGE III on the International Space Station at NASA’s Langley Research Center in Hampton, Va. She has previously worked as a science writer and a newspaper reporter, specializing in environmental reporting. Damadeo has a degree in Communication Arts from Ramapo College of New Jersey.

Flights of Flames for Fire Safety in Space

In today’s A Lab Aloft guest blogger, Sandra Olson, Ph.D., reveals some of the mysteries of how flames burn in microgravity, as well as how flame studies on the ground and aboard the International Space Station help with fire suppression and safety in space.

Whether dropping through a hole in the ground as part of a drop test or zipping through space aboard the International Space Station, flames behave in fascinating ways in microgravity! In the Zero Gravity Research Facility, or ZGRF, at NASA’s Glenn Research Center, I get to study solid fuel combustion behavior first hand. ZGRF is a historic landmark and the deepest drop tower in the world with a freefall of 432 feet. Drop test experiments, like the one pictured below, look at material flammability during the brief, 5.18-second period of microgravity achieved as the sample package falls.


During a Zero Gravity Research Facility tour, Facility Manager Eric Neumann (far left) shows International Space Station Program Scientist Julie Robinson (front center) and her colleagues one of the drop packages used in the facility. The top of the white vacuum drop shaft is in the background. (NASA/Marvin Smith)

The drop test was remotely run from the ZGRF control room. Controllers activated the miniature wind tunnel apparatus to establish a spacecraft ventilation flow environment, then ignited the material and dropped the experiment. Once the sample releases into freefall, the experiment is completely automated. The drop vehicle lands in the catch-bucket at the end of the 5.18 second test.

 
Experiment images (left) and catch-bucket facility images (right) appear on the ZGRF control room screen. (NASA/Marvin Smith)

We have performed many drop tests studying how materials burn in microgravity compared to how they burn in normal gravity, or 1g. What we have found is that many materials actually burn better in the spacecraft flow environment than in 1g. This is because on Earth the buoyant flow—created when less dense materials rise within greater density environments—is strong enough to blow the flame out with oxygen reduction. In low ventilation, however, the slow flow provides the oxygen at an optimum rate, so the flame can survive to lower oxygen levels than in 1g. To learn more about the concepts of microgravity and combustion in the space environment, watch this “NASA Connect” video.


A flame burning in microgravity at the end of a 5.18-second drop from the Zero Gravity Research Facility. The material for this test was cotton fabric burning in 5 centimeter per second air flow, which is the typical International Space Station atmosphere. Crew clothing is often made of cotton. (NASA)

Enhanced flammability in space was recently proven in longer duration burn experiments aboard the space station as part of the Burning and Suppression of Solids, or BASS, investigation. For this study, the crew of the space station gets to play with fire. As a co-investigator, I get to observe via video on the ground and directly talk to the crew as they ignite a flame in the controlled area of the Microgravity Science Glovebox, or MSG, filming the behavior of the burn.

After his recent return to Earth, Astronaut Don Pettit, who worked on the BASS flame study in space, testified to a Senate subcommittee about the investigation and the importance of combustion experiments in microgravity.

“If you look at fire, fire and its either discovery or learning how to tame fire is what literally brought us out of the cave and allows us to have our civilization in terms of what we know now,” said Pettit. “Fire gives us our electricity. Fire allows us to have vehicles, airplanes and cars, and machines. It literally turns the wheels of our civilization…space station now offers us the ability to dissect deeper down into what the processes are in combustion… by looking at it in an environment free from gravity, free from the gravitational-driven convection. And this allows us to look at things and figure out what’s going on at a level that you could never see without taking it to space…and what we found is that things are more flammable than what we thought.”


(Left) Astronaut Joe Acaba runs BASS in the Microgravity Science Glovebox, or MSG. (Right) Astronaut Don Pettit holds up a burned acrylic sphere to show the science team on the ground how a fine layer of soot coats the wake region of the material, while the front part of the sphere looks like a meteorite with the surface marred with many craters. (NASA)

These experiments so far have confirmed that when the air flow is turned off, the flame extinguishes rapidly as it runs out of oxygen, with no fresh air flow. The MSG provides an enclosed work area, sealed to contain fluids, gasses and equipment for the safe running of combustion experiments. The crew views the burning material through the front window. The flame can be seen through this window in the picture with Joe Acaba (above). You also can see Don Pettit working on a previous run of BASS aboard station in this video.

This finding reaffirms the space station fire alarm protocol to turn off any forced air flow in the event of a fire alarm. Surprisingly, though, when the astronauts used a small nitrogen jet built into the flow duct for fire suppression testing, the flame did not go out when the air flow was turned off, if the nitrogen jet was on. In fact, the flame appeared to get brighter. Researchers intend to continue to study this unexpected discovery in which the nitrogen jet was able to entrain air all by itself, as the finding has important implications for gaseous fire suppression systems like the
CO2 suppression system currently employed on station.


Acrylic sphere burning as part of the Burning and Suppression of Solids, or BASS, investigation aboard the International Space Station. (NASA)

BASS results also catch the attention of future spacecraft designers. One of the sample materials burned in BASS is acrylic, also called Plexiglas. This material is under consideration for spacecraft windows because of its excellent strength, mass and optical properties. However, it also burns quite well in the space station air environment. BASS payload summary reports mentioning acrylic have spurred a number of recent inquiries to the investigator team about the flammability of this material. After all, you don’t want your spacecraft windows to catch on fire!


A wax candle flame in very low air flow is nearly spherical with an inner sooty layer near the wick, and an outer blue layer. This blue is due to chemiluminescence, which is when a chemical reaction emits light. (NASA)

The BASS investigation has direct applications to spacecraft fire safety and astronaut wellbeing. A combustion experiment, BASS was jointly designed by scientists and engineers at NASA and the Universities Space Research Association, or USRA. BASS operations are scheduled to begin again aboard the space station in the spring of 2013.

The best part of my job as a researcher is the thrill of discovering new phenomena unique to microgravity. It is exciting to work with something as beautiful and powerful as fire, especially in these unique microgravity environments. The fire images have inspired me to create art images from them. 

 
2009 Art “Fire’s Ribbons and Lace”
The delicate and fractal nature of charring cellulose is amplified here in repeated magnified images of a flame spread front over ashless filter paper. (Sandra Olson)


2011 Art “Flaming Star”
Microgravity flames converging toward the center of the starburst ‘implode’ against an outflow of wind, creating a diffusion flame ‘supernova.’ (Sandra Olson)

The more we understand the behavior of flames with given materials and conditions, the better prepared we will be to harness their potential and contribute to fire safety in future space exploration. What’s next will depend on what we discover from these ongoing tests, building on the knowledge already gained from these important combustion studies.


Sandra Olson, shown here with the microgravity wind tunnel drop apparatus.

Sandra Olson, Ph.D., is a spacecraft fire safety researcher at NASA’s Glenn Research Center, as well as the project scientist and co-investigator for the BASS investigation. She has a B.S. in Chemical Engineering and a M.S. and Ph.D. in Mechanical Engineering. She has worked at NASA since 1983, most of that time studying microgravity combustion.   

 

Remodeling Research for Astronaut Bone Health

In today’s A Lab Aloft blog post, guest blogger Scott M. Smith, Ph.D., reflects on the recent publication of results on human health space station research regarding the beneficial connections between bone density, diet and exercise.

This month, September 2012, marks the publication of a paper in the Journal of Bone and Mineral Research documenting how crew members that ate well, had good vitamin D status, and exercised hard maintained their bone mineral density. There are several remarkable things in and about this paper that I would like to share in this blog.

From a science perspective, this marks the first documentation of protecting bone mineral density during space flight. It’s amusing that I have already gotten several questions about whether or not we can tell if it was the exercise or the nutrition that made the beneficial difference. The answer is no, we can’t. 

I suspect some folks would like to think it is just the exercise. I am quick to point out, however, that while I am somewhat biased as a nutritionist, I believe that all aspects were critical to the success of the program. There are plenty of non-NASA studies showing that inadequate nutrition leads to bone loss. I’ve also seen online summaries of research giving vitamin D the lead role—I guess it all depends on your perspective.

Regardless, nutrition (including and beyond vitamin D) and exercise are both very important. We are not going to set up experiments to determine if limiting one of these factors has a negative effect on bone, given that would clearly be the wrong thing to do for the crew of the International Space Station.

NASA astronaut Don Pettit, Expedition 30 flight engineer, is pictured near a snack floating freely in the Unity node of the International Space Station. (Credit: NASA)

There has been immediate reaction to the Benefits for Bone from Resistance Exercise and Nutrition in Long-Duration Spaceflight: Evidence from Biochemistry and Densitometry paper. Some people feel that we can now proclaim spaceflight-induced bone loss a fixed problem and move on. This is clearly not the case, however, as what we found is that bone seems to be remodeling. In other words, bone breakdown still increases, but what happened here is that bone formation tended to increase as well, which appears to help maintain bone mineral density.

A big question remains: is the bone as strong after flight as it was before flight? Follow-on studies are underway to help answer this. Nonetheless, it is better to maintain bone mineral density with a question about strength, than to not maintain bone mineral density—which is where we’ve been up to now. We also hope to optimize both exercise protocols, for example using the Sprint Investigation aboard station, and nutritional aspects of bone health, as seen with the SOLO and Pro K studies. You can read more about these topics in my earlier blog entry on omega-3 fatty acid: Of Fish, Astronauts, and Bone Health on Earth.

NASA astronaut Mike Fossum, Expedition 29 commander, performs a SPRINT leg muscle self scan in the Columbus laboratory of the International Space Station. (Credit: NASA)

Another striking thing about this paper was the team. We had two of NASA’s bone experts, Linda Shackelford and Jean Sibonga; one of NASA’s muscle/exercise experts, Lori Ploutz-Snyder; and nutrition experts from NASA and ESA, Sara Zwart, Martina Heer, and myself. Getting all teams to come together to work on this paper required a fair amount of choreography, including agreements on presentation, interpretation and description of the data.

As an aside, in the late 1990’s Dr. Shackelford led an effort to conduct bed rest studies with resistance exercise here on the ground. She published results that mirror what we found in the flight study. Bed rest is a model of space flight, and results in a different magnitude bone loss, but nonetheless it provides evidence useful in assessing flight studies. This is a perfect example of why we test things on the ground first, but then also test them in flight. We want to be sure to know what happens in actual space flight.

Another unique aspect of this paper is the time it took to pull everything together. It was early this year, on January 26, Sara Zwart and myself were sitting in the office trying to assess what data from the Nutrition investigation we should look to try to publish next. I mentioned that we had not published any of the bone marker data, and perhaps we could look at ARED/iRED differences. ARED is the Advanced Resistive Exercise Device aboard station that the crew uses to simulate free weight exercises on orbit, while the iRED is the Interim Resistive Exercise Device used for upper body strength development.

NASA astronaut Dan Burbank, Expedition 30 flight commander, exercises, using the Advanced Resistive Exercise Device, or ARED, in the Tranquility node of the International Space Station. (Credit: NASA)

Sara and I met very early, around 1 the next morning, at the Telescience Center—one of the back rooms in Mission Control. We were waiting for the crew aboard station to awaken so astronaut Don Pettit could collect his FD30 blood sample for the Nutrition and Pro K studies. Sara mentioned that she’d looked at the blood and urine bone marker data, and there didn’t appear to be major differences between the groups: resorption (bone breakdown) wasn’t different, and formation trended up, but wasn’t overly striking. I asked Sara if she’d looked at the bone densitometry (DEXA) data to see what happened with bone and body composition, and she said no, but she would. She logged in to our lab database, and about 30 minutes later turned and said, “I take it back—there’s something there!”

I told Sara I would start working words, and she should start working tables. By 9:30 the morning of the January 27, 24-hours after we first discussed it, we had a 17-page draft of the manuscript, which included 3 tables of data and complete statistical analysis. It took us about a week (and some sleep) to clean up the draft, and we then sent it out to the coauthors to start the process of bringing in their expertise and adding in details. This was especially important regarding the exercise aspects and the bone measurement details, which elude us nutrition types, along with overall interpretations.

Essentially taking eight months from concept to publication, the journey for this paper is simply incredible! We’ve never had a scientific paper go from essentially the first look at the numbers to print this quickly before, and, well…you never count on something like this to happen again.

Cover of the September 2012 edition of the Journal of Bone and Mineral Research where the Benefits for Bone from Resistance Exercise and Nutrition in Long-Duration Spaceflight: Evidence from Biochemistry and Densitometry paper on astronaut bone health published. (Credit: JBMR)

Scott M. Smith leads NASA’s Nutritional Biochemistry Lab at Johnson Space Center. He completed his doctorate in nutrition at Penn State and conducted postdoctoral research at the U.S. Department of Agriculture’s Human Nutrition Research Center in North Dakota. Smith leads experiments, both on the ground and in space, aimed at improving astronaut nutrition. Smith’s two space station experiments include Nutritional Status Assessment and Pro K.  The Pro K study is designed to investigate the roles of animal protein and potassium in bone loss.

 

Growing Future Scientists with Plant Signaling Space Study

In today’s A Lab Aloft guest post, International Space Station Plant Signaling study Principal Investigator Imara Perera, Ph.D., shares the importance of involving students in science today to groom them for careers in research tomorrow.

I find working with the International Space Station for plant growth studies inspiring, and it’s important to me to share my enthusiasm with the next generation of researchers. Most of the students that work with me in the lab come through some sort of internship program and get class credit for doing research. Students can also apply for research awards from North Carolina State University to fund their work.

My current project, Plant Signaling, generated a lot of interest when I spoke at the university biology club. This talk resulted in several volunteers who wanted to work in the lab, because everyone is excited about doing experiments in space.

The flight portion of the investigation went well. We have images from two experimental runs in the European Modular Cultivation System (EMCS) centrifuge, which the students help us analyze for measurements of plant growth. For the analysis, students measure the root lengths in flight photos to get an idea of the total amount of growth.


Freshman student Kalyani Joshi, analyzing images from the Plant Signaling investigation. (North Carolina State University)

One of the goals of this study is to look at the impact of microgravity on the Arabdopsis thaliana plant growth by comparing how the roots and shoots orient themselves. Seed samples for the study include a wild type and a transgenic line. Plants from the transgenic line are genetically modified to affect their ability to sense and respond to environmental changes.

When examining the images, the first thing we look at is how well the seeds grew. The germination was excellent, and because we have images from different time points—every six hours during five days of operations in orbit—we can compare between the different lines and between the different gravity settings for how the seedlings grew during that period of time.

 
Astronaut Michael Lopez-Alegria works with European Modular Cultivation System experiment containers aboard the International Space Station. (NASA)

We have many images from both the micro-g and 1g environment samples thanks to the setup of the EMCS. The EMCS has two chambers, which is nice because it includes two centrifuges. This allows you to do your 1g ground control in space at the same time you do the microgravity testing. This means you only have the one variable of microgravity, while all other aspects of the space environment are the same.

Usually for microgravity studies you do a ground control vs. a flight experiment; but, it’s not just the gravity that’s different. There are other things that you cannot measure or replicate from that environment, such as radiation, vibration or the presence of other gases. This is a very beneficial control if you want to get at just the difference between microgravity and 1g. In addition, by carrying out a ground reference control on Earth, we can get an idea of some of the other space effects that are not so well defined at this time.


View of the European Modular Cultivation System experiment container replace activity performed in the Destiny laboratory module of the International Space Station. (NASA)

We would like to do more advanced analysis to see if there is any difference in the microgravity vs. the 1g plants. We expect less organized growth in space compared to on the ground, however this is not obvious from looking at the images. We may need to analyze the images more closely, and we are looking at options to see whether or not the pattern of growth is different. As of now we’ve just looked at the total amount of growth and there does not appear to be major differences.

Flight samples returned to Earth with SpaceX Dragon on March 26, so once we get them we can analyze the genetics of the physical samples to understand their changes at a molecular level—specifically in how the plants sense the microgravity environment and how this influences their growth and development. To do that, we will carry out global transcription profiles of the plants, which is like taking a “snapshot” of all the genes that were expressed in the plant. This tells us how the plants are responding, because even though they may look the same, at a molecular level there may be different pathways that are up or down regulated—showing an increase or decrease in cell response—in the transgenic line compared to the wild type.


The image above shows seedlings from the Plant Signaling investigation aboard the International Space Station. (NASA)

By comparing those two plant types, we hope to understand what signaling pathways are involved in plant responses, not just to microgravity, but also based on the space environment’s other factors. We have data from previous years of ground work where we looked at the response of these transgenic plants, and we know they are a little bit delayed and slow to respond to gravity stimulation. If you place a plant horizontally, after some time the shoots and roots reorient back to vertical. The transgenic plants have a harder time doing that, so we have an idea that this pathway is involved in sensing gravity and responding to it.

Just as experiments can produce surprising findings, I often find something unexpected from student participation in my research. Since I’m in a plant biology department, I usually get students that come to work with me with a strong biology background. But this study generated a lot of interest from students within bioengineering programs, so we had some interns who actually didn’t have that much of a biology emphasis, which turned out to be a learning experience both ways.


Students Will Smith (left) and Peter Svizeny (right) working with plants at the North Carolina State University lab. (North Carolina State University)

One student, Benjamin Cowen, was from the physical sciences, and he did some ground-based work using some of the prototype hardware that we use for the flight experiment. It was quite an inspiration for him, and now he’s looking to enter an astrobiology graduate program. It’s useful to have the different backgrounds, because people do not have the same preconceived ideas that we may have developed in biology studies.

I’ve had positive feedback from participating students, including some who have returned to continue working on the study. I had one local high school student, Kalyani Joshi, who came to talk to me before the investigation went up on the flight to the space station. Kalyani was excited about the study and came to volunteer and work in the lab. When she graduated from high school, she applied and was admitted to North Carolina State University. Now she’s a freshman and received some undergraduate research funding, so she’s going to continue to work in the lab. Kalyani’s been doing a lot of the measurements of the space images and really enjoys the project.


The patch design for the International Space Station Plant Signaling investigation. (NASA)

When we were preparing for the experiment, I had another student, Caroline Smith, who worked as my research associate. She is in graduate school now, but plans to come back to help analyze the flight samples. She’s really interested in the findings, as she was instrumental in setting up the experiment.


Research Associate Caroline Smith (foreground) works alongside Principal Investigator Imara Perera at NASA’s Ames Research Center, Moffett Field, Calif., assembling the Plant Signaling investigation. (NASA)

I’m highly committed to including students in the lab setting, having worked with half a dozen for this research project. I anticipate continuing to foster that collaboration. It will be fascinating to see not only what we learn when the Plant Signaling samples come in for analysis, but also to see what comes next for the students inspired by this study.



Imara Perera, principal investigator for the International Space Station Plant Signaling investigation shown here in the lab at North Carolina State University. (North Carolina State University)

Imara Perera, Ph.D., is a research associate professor in the Department of Plant Biology at North Carolina State University. Her primary research interests are in understanding the role of lipid-mediated signaling in plant responses to environmental signals and stress, with the long term goal of improving plant growth under unfavorable conditions. She has been involved in plant gravitational biology research since her postdoctoral work, and she has been a principal investigator on NASA-funded ground-based research since 2001. Currently, Perera is the principal investigator on a spaceflight project entitled “Plant Signaling in Microgravity” to characterize the molecular mechanisms of plant responses to microgravity that was conducted aboard the International Space Station in 2011. 

 

Comparing Platforms: Suborbital and International Space Station Research

The following is aninterview with International Space Station Associate Program Scientist TaraRuttley and Southwest Research Institute Associate Vice President for Researchand Development Alan Stern as they discuss the benefits and differences betweenthe space station and suborbital research platforms.

A Lab Aloft’s JessicaNimon: Alan and Tara, thank you forjoining me. Today we are talking about the topic of microgravity researchplatforms. I sometimes hear people treat suborbital and orbital laboratoryoptions as synonymous. These options, however, offer distinctly differentbenefits. Alan, can you tell me what makes suborbital research unique?

Stern: Suborbitalis special for a number of reasons. First of all, it offers low cost and morefrequent spaceflight than we can currently achieve with orbital research. Italso provides the space station with a great training and proving ground. Sodespite its many amazing capabilities, space station is highly constrained interms of crew time, how much equipment you can get back and forth and room toplace investigations. Naturally, only the most important experiments can go upto station and they receive limited crew time. This is part of why it isimportant for the station to have a proving ground—like suborbital—where youcan test the equipment, the techniques and the science. This way selections forwhich experiments should go up to station can be made based on experience inresearch, not just theory.

My analogy for the relationship between the station andsuborbital research is a baseball one: the major leagues rely on the minors asa feeder system and I think this is a similar relationship between station (i.e.,the major leagues) and suborbital (i.e., the minors). Without the minorleagues, the majors would be crippled; they would not have the farm teams todevelop techniques and players. I think the station can use suborbital in thesame way and very cost effectively.

Ruttley: I agreewith Alan that suborbital research can help to pare out the tests thatinvestigators want to do. It could be a way for a scientist to get a goodhandle on a hypothesis prior to working with the space station. Once aninvestigator knows what might be seen in microgravity, a decision can be madeon the next step.

One of the advantages of working with the space station isthis ability for continuous testing. On the ground, scientists do oneexperiment, look at the results, and then repeat in a lab setting withcontrolled variables. The space station provides a researcher the ability toperform multiple trials to increase the data set, thereby offering longevitywith a sustainable presence in space.

You have large opportunities for data and power, as well. Theseare huge resources for investigations like the Alpha Magnetic Spectrometer or AMS.This study could not sustain itself without the space station’s power and data capabilities.Space station also provides a humanin the loop to help troubleshoot in real time and potentially move theinvestigation on to the next step.


The starboard truss of theInternational Space Station with the newly-installed Alpha Magnetic Spectrometer-2, or AMS,
visible at center left.

(NASA Image S134E007532)

Something else to consider is that the space station offersnot only the U.S. laboratory, but also access to our international partnerlabs. Each partner module has its own range of facilitiesfor investigators to potentially take advantage of. This includes externalmounting for studies seeking exposure to the space environment. It is appealingto researchers that we have this massive, interdisciplinary, resupplied andfully-outfitted research laboratory on orbit.

A Lab Aloft’s Jessica Nimon: Alan, you mentioned thatsuborbital research can feed into station investigations. I’m curious, doesthis ever occur in reverse? Have findings from station studies contributed to suborbitalresearch?

Stern:  Not yet. I think that’s largely the outcomeof limitations with the current suborbital program at NASA. For one, NASA’scurrent suborbital program does not fly very often and it’s very expensive. Secondly,it’s primarily a Science Mission Directorate program and station does not do alot of planetary science, astrophysics or much Earth science—the mainstays ofthe Science Mission Directorate. These could be future areas, however, for thespace station to expand into.

But I also think the new commercially reusable suborbitalefforts are going to really change current paradigms and allow things to workin both directions. This is because the user community will vastly expand withdaily flights—instead of monthly flights—and lower costs will enable more trialand error experimentation like in a regular lab. The people interested incommercial suborbital are not necessarily looking at the same goals at the ScienceMission Directorate. They are looking instead at the things that fit betterwith station, in terms of the user base: microgravity, life sciences,technology tests.

Ruttley:  There are a few NASA research announcements sponsoredby the Science Mission Directorate right now that encompass the use of thespace station. These are the ResearchOpportunities in Space and Earth Sciences, or ROSES, and the Stand Alone Missions of Opportunity Notice,or SALMON.

Stern:  There are many places in the directorateportfolio that space station could assist with. Putting these things on thealready existing station platform makes sense; it would allow many kinds ofresearch to move forward faster. It is true, however, that while in many casesthis will work, some kinds of research just aren’t compatible with station. Forinstance, since station is a human space facility—which by nature has a lot ofoutgassing—it is too dirty for some kinds of external investigations.

A Lab Aloft’s JessicaNimon:  Do you see a difference in interest or a preference from users towardseither platform?

Stern:  Most of what I’ve heard is that there arelimited resources and too lengthy of a timeline for both station and suborbitalresearch. Fixing this for both arenas would be a home run hit. I think usersfind that suborbital is easier to work with, due to the faster timescales. Youcould spend 5 to 10 years in the past getting something to fly on shuttle, and2 or 3 years getting ready for a sounding rocket flight, but the commercialresearch and development cycle is usually less than a year—which is the verytimescale the new suborbital vehicles are comfortable with for arrangingflights.

If station can streamline its experiment manifesting andoperations, with COTS [commercial off-the-shelf] and commercial cargo goingback and forth, this may change. Now that we have great facilities aboard thespace station, I’d like to see the use of existing hardware to getinvestigations going more swiftly. Otherwise, the timescale is too big abarrier to most users. The space station needs to adapt the customer’s needs, Ithink, to increase its user base.

Ruttley:  That has been the case in the past, Alan, butrecent National Lab efforts have done a lot to improve the timeline. TheNational Lab has been successful in securing several agreements with governmentagencies, commercial users, and universities for the use of the space station.National Lab Manager Marybeth Edeen recently wrote a blogon this topic of improving the timeline to flight. Payload developers usingexisting hardware have been able to fly to station in as little time as sixmonths . This is not the standard yet, but it is possible by pairingresearchers with existing certified payload developers to really accelerate theprocess.

Stern:  I don’t think this is well known yet. Withthis changing for the positive, people need to know that the story haschanged—let’s get the word out faster.

Ruttley:  That’s part of what we’re doing with thisblog and with our other media efforts, like the storieswe publish on our International Space Station Research and Technology Website.With the National Lab effort, over 50 percent of NASA’s assets are available tousers. Perhaps the new non-profitmanagement planned for National Lab will have additional ways to help getthe word out.

Stern:  It’s good that the word is now starting toget out, but I think that more could be done to reach more users. PerhapsNational Lab can send representatives to host workshops at the meetings andconferences scientists attend, whether industrial or academic. Just to talk tothem and answer their questions on how to do business. Usually researchers arelooking for money, too, since universities don’t usually have their own for investigations.

Ruttley:  I agree. I think the progress ofcommunication and the streamlined process will continue to improve over thenext few years. National Lab users do have to come up with their own researchfunding, but it’s been shown to be successful already. Just last year, the NationalInstitutes of Health, or NIH, gave three awardeesthe money to do their research on the station; NASA will integrate and launchthe investigations. While the National Lab and the Space Station PayloadsOffice are working on a streamlined process for launch and integration, researchfunding itself will always be the real issue for potential researchers.

A Lab Aloft’s Jessica Nimon:  Where do you see the future of suborbitalresearch?

Stern:  Right now there are five firms buildingreusable suborbital systems: Virgin Galactic, XCOR, Armadillo Aerospace, MastenSpace Systems and Blue Origin. Four carry people and payloads and one—i.e.,Masten—carries only payloads. While the legacy NASA suborbital program fliesinfrequently, these commercial companies plan a far more frequent flightschedule. Between several times a week and daily, so we’ll go from roughly twodozen flights per year to hundreds per year. This will be a huge change to users’access to space. It will be more affordable, too, maybe in the hundreds of thousandsof dollars.

Ruttley:  The price of space station research is alsocoming down, because more and more experiment hardware can be reused. Companiessuch as BioServeor NanoRacks LLC offer excellent entrypoints for new experiments; you can do a lot on the space station in thehundreds of thousands range.


Dave Masten and Nadir Bagaveyev mounting the Amespayload rack onto the Xaero s
uborbital launch vehicle prior to a combined systems test.  
(Credit: Doug Maclise)

A Lab Aloft’s Jessica Nimon:  What is the operations duration for theseexperiments on suborbital flights?

Stern:  It’s really short. The typical time they havein microgravity is three to four minutes, which is the same as the currentstandard suborbital option. You can make a well thought-out experiment run inthis timeframe, however, and then fly it again to get more data.

Keep in mind that there are multiple experimentsrunning at once on a given flight. Each seat can hold racks capable of housing asmany as 10 experiments—in just one seat! Virgin, for instance, plans to havesix seats available on six vehicles, which they plan to fly on a daily basis.Add to this the other companies similar numbers and over time and with enoughflights, suborbital has the potential to start returning many hours of research—ifall the seats are full. The difference is that it comes in little blips, ratherthan all at once.

Currently the U.S. flies only one suborbital soundingrocket mission every two weeks. So as all of the various suborbital companiesramp up to full operations, we have a huge magnification of capability. We willhave 10s of hours per week of available human research flight time, in additionto the onboard automated experiments. We are approximately four to five yearsaway from full operations.

Ruttley:  This is a great way for short-durationexperiments to get microgravity time, especially as demand for the space station’slong-duration capabilities grows. The suborbital option can potentially free upthe station platform for investigations that need to run for longer than threeminutes in a given flight. The two options really could work in concert, asthey both meet different experiment needs, based on duration and capability.

I’d like to point out that the space station also usesracks, though of a different design and capability, to house multiple studies.These racks, which are housed in each module, can hold several investigationsat once. As far as hands-on research, however, the space station at fulloperation gets 3,500 hours of crew time per year across the whole partnership.Our long-duration capabilities enable our investigations to run according tothe needs of the research, whether in repeatable, short-duration experiments orin longer, ongoing operations. The crew can also replicate studies immediately,under the right circumstances, to look into unexpected phenomena.

A Lab Aloft’s JessicaNimon:  Alan, can you comment on current funding for suborbital flights?

Stern:  There are two sources that come to mind.There’s a request for proposals from NASA’s Chief Technologist Bobby Braun’soffice. In their flight opportunities program, they just completed finalselection for suborbital payloads. It’s a very small program, but it’s a start.Along with that, they also did another request for proposals due June 24, 2011to select launch service providers and integrators—and just announced IDIQ[indefinite-delivery, indefinite-quantity] contracts with seven flight providerfirms.

A Lab Aloft’s Jessica Nimon:  Tara, turning to the space station now. Wheredo you see the future of station research going?

Ruttley:  When you look at where the space station isheaded, there are really two areas to examine. The station as a whole and theNational Lab. For the station at large, our international partners each havetheir own individual goals based on their governing agency and their scientificand political climates. NASA’s own space station research goals are dependenton our mission—currently this is driven by the NASA Authorization Act of 2010.So as a result, NASA focuses on areas of research that benefit spaceexploration, and relatively less fundamental physical and life sciences, thoughthey are certainly not excluded.

The second piece is the U.S. National Laboratory, with afocus on Earth benefits. The combination of these elements drives the use ofthe space station as a whole. So the future of station is to continue to marchtowards these mission directives and goals. As more users engage in NationalLab efforts, we will see more of those Earth benefits, as well. It is importantto mention, however, that any research done on station can have Earth benefits,even if that is not the original focus of the investigation.

A Lab Aloft’s Jessica Nimon:  Where are your suborbital efforts headednext?

Stern:  We do a number of things related to suborbitalflight at the Southwest Research Institute.We will launch our own payload specialists and payloads in this effort; currentlywe have nine launches funded and options on three more.

A Lab Aloft’sJessica Nimon:  What do you hope to see ahead for orbitalresearch?

Stern:  I think one of the things this decade willhopefully see—and which may amp up the space station program—is an effort tohost commercial payload specialists. Whether in government or commercial taxis,these payload specialists could stay weeks or months on station using the NationalLab. It’s hard to tell if this will happen, in the government world, but it wouldbe a great program for the space station. We had something like this forshuttle and I think it would benefit station, as well.

Ruttley:  I think the real key is that efforts tohave commercial companies flying people into space are going to be importantfor both research on the space station and other flight opportunities. Witheasy access to both station and abbreviated platforms like suborbital flights,scientists will finally be unconstrained and able to do experiments where theysee fit. The discovery potential is amazing!

Tara Ruttley, Ph.D., is Associate Program Scientist for theInternational Space Station for NASA at Johnson Space Center in Houston. Dr.Ruttley previously served as the lead flight hardware engineer for the ISSHealth Maintenance System, and later for the ISS Human Research Facility. Shehas a Bachelor of Science degree in Biology and a Master of Science degree inMechanical Engineering from Colorado State University, and a Doctor ofPhilosophy degree in Neuroscience from the University of Texas Medical Branch.Dr. Ruttley has authored publications ranging from hardware design toneurological science, and also holds a U.S. utility patent.


Dr. Tara Ruttley
(NASA Image)

Alan Stern, Ph.D., is the Associate Vice President for Research andDevelopment for Southwest Research Institute Boulder, Colo. He also served asNASA’s associate administrator for the Science Mission Directorate in 2007-2008.Stern is a planetary scientist and an author who has published more than 175technical papers and 40 popular articles. He has a long association with NASA,serving on the NASA Advisory Council and as the principal investigator on anumber of planetary and lunar missions. Stern earned a doctorate inastrophysics and planetary science from the University of Colorado at Boulderin 1989.


Alan Stern
(ISPCS 2010)

Sharing the Love

This week on A Lab Aloft, comments from guest blogger Justin Kugler, Systems Engineer with the National Laboratory Office, as he recalls his experience at the STS-135 Tweetup at Kennedy Space Center, Fla.

Our mission in the International Space Station National Laboratory Office is to make the unique capabilities of the station more open to other government agencies, industry partners, and education programs. Fulfilling that mandate from Congress has introduced me to a wide variety of researchers, technologists, engineers, entrepreneurs, and educators. I have every expectation that the National Lab portfolio will only grow more eclectic with time.

As the admin for the National Lab Office Twitter account, @ISS_NatLab, it was exciting to move out from behind the keyboard and take the stage at the STS-135 Launch Tweetup at Kennedy Space Center, Fla. on July 7, 2011. Presenting alongside me was scientist Tracy Thumm with the International Space Station Program Scientist’s Office. This is a great example of how NASA has embraced the power of social media to connect with the public and share our stories.

Tracy Thumm and Justin Kugler
speak at the STS-135 NASA
Tweetup (NASA image)

Back home, our colleges with @ISS_Research supported the Tweetup and posted updates for our followers on Twitter. Tracy and I spoke about the science, technology, and exploration research planned for the final mission of the Space Shuttle Program and aboard the space station. In addition to the physical group of 150 of NASA’s biggest fans, we had countless virtual participants through the live video stream and online forums.

Some of the topics we covered for STS-135 included advanced vaccine research and the J. Craig Venter Institute’s bacteriological survey of the station environment. I also had the privilege of presenting some of the new technologies that will be broken in on the station in preparation for future deep space exploration, such as new carbon dioxide scrubbers, non-toxic propellants, inflatable modules, and advanced telerobotics. 

I really enjoyed the Q&A session that followed my talk, as it allowed us to answer in greater detail how research opportunities are expanding on the station. For example, I shared a training module from a commercial partner, NanoRacks, LLC. This 10-cm cubed platform, with USB port for power and data, houses and integrates small experiments aboard the station. Using ready-made platforms like this enables researchers with a good idea, but relatively little funding to obtain sustained exposure to the microgravity environment. We also talked about the planned use of commercial lab equipment—such as a plate reader—modified for the station that will allow NASA to send data back to researchers on the ground without having to return samples. This reduces the time lag to get results.

My colleague Tracy fielded a question regarding the length of time till scientist see results from station research. In fact, we are already seeing results, such as a recently published study on the stability of pharmaceuticals in space. The International Space Station Research and Technology Website keeps tabs on the results, as they become available to the public. The actual duration for results varies from investigation to investigation.

One of my favorite questions, though, was about what we still need to learn to send humans on long-duration missions and where people can learn more. There are, relatively speaking, only a handful of data points for how the human body behaves in the space environment and billions of data points here on Earth. We understand very little of what happens in between, such as with the one-third-normal gravity of Mars. Future human research studies on the station will help us fill in those gaps so we can design vehicles and missions to keep human explorers healthy, safe, and sane on their journeys. NASA’s Human Research Roadmap covers this in much greater detail.

Later, I was told that the tent was quiet—except for the background hum of the portable air conditioners—because everyone was listening intently, taking notes for their blogs or posting our answers in real-time to Twitter. Attendees continued to come up to Tracy and I to ask questions about the work being done on the station throughout the rest of the event.

The Tweetup also included a special visit from Deputy Administrator Lori Garver and an entertaining interview between astronauts Mike Massimino and Doug Wheelock and Sesame Street star, Elmo. The Muppet, interestingly enough, had as many questions as the astronauts! 

Sesame Street’s Elmo interviews
astronauts Mike Massimino and
Doug Wheelock at the STS-135
NASA Tweetup.
(NASA Image)

After the rains of that Thursday passed, the attendees all made their way out to the lawn near Pad 39A to visit the shuttle Atlantis. The crowd was electrified by the breathtaking unveiling of the orbiter, as the rotating service structure retracted from view to clear the pad for launch. Despite the amorphous grey clouds in the background, the stark contrast between the orange external tank, black and white thermal tiles on the orbiter, and the white cylinders of the boosters was truly riveting.

The rotating service structure
retracting from Atlantis
(Image courtesy of Justin Kugler)

Surprises were in store for the Tweetup participants throughout the morning of launch day. This included a visit from astronaut legend, Bob Crippen, and the introduction of Bear McCreary’s “Fanfare” for STS-135 by Seth Green (an unabashed NASA enthusiast). As the hours rolled by, the anticipation was at a fever pitch. The weather was progressively improving and everyone had a sense that the launch would actually happen.

The passing of the Astrovan further raised the level of anticipation. We had our first indication that the “final four” were close from the passing of the escort helicopter. A spontaneous cheer went up when the van and its security entourage turned the corner and came into view. There was one last stop to let off anyone not going to the pad, then the crew of Atlantis pressed on to their destination and a beautiful launch!

One last stop for the Astrovan.
(Image courtesy of Justin Kugler)

After Atlantis’ ascent, people made their way back to their laptops in the Tweetup tent or established a connection with their smartphone, the blog posts, Tweets, and picture uploads resumed en masse. Each of the Tweetup attendees became an ambassador to the rest of the world for NASA.

That relationship is what NASA Tweetups are all about. Even in the twilight of the Space Shuttle Program, the love and passion for spaceflight was alive and well in us all. I believe it is the responsibility of those who experienced the final shuttle launch—NASA employees and honored guests alike—to share this connection with the rest of the world and to look forward to the next decade of research on the space station.

The Tweetups are successful because they embody more than just telling people about what we do at NASA. Attendees have the chance to participate and share the story on their own terms. It is this bond between NASA and the public that can sustain interest in and support for our nation’s space program and future exploration. We still have a lot of work to do on the space station and to prepare for missions in deep space, so I look forward to many more Tweetups to come.

The STS-135 Launch Tweetup participants.
(NASA image)

Justin Kugler works at NASA Johnson Space Center in the International Space Station National Laboratory Office. There he supports systems integration activities for science payloads. He has a B.S. in Aerospace Engineering from Texas A&M University and a M.S. in Mechanical Engineering from Rice University.

 

From Macro to Nano – A New Microscope on the International Space Station

Thisweek’s guest blogger, Dr. Peter Boul, shares some of the exciting facilitydevelopments for the International Space Station National Laboratory with thereaders of A Lab Aloft.

World-class research on the InternationalSpace Station would not be possible without a dedicated suite ofstate-of-the-art laboratory facilities and the project scientists that helpacademic researchers to use them. These are the resources that make experimentspossible and are invaluable to microgravity scientists.

The LightMicroscopy Module (LMM) is a case-in-point for a state-of-the-art facilityenabling high-impact scientific research. This module features a lightmicroscope capable of supplying images of samples on the space stationmagnified by up to 100 times their actual size. These images are digitallyprocessed and relayed back to Earth, where remote control of the microscoperesides. This allows flexible scheduling and control of physical science andbiological science experiments within the Fluids Integrated Rack or FIR on the spacestation. The present LMM will provide high-resolution images of samples andtheir evolution. In the near future, the LMM will produce 3-dimensional digitalimages, with the future addition of a confocal head for the microscope.


NASA astronaut T. J. Creamerperforming operations with the Constrained Vapor Bubble
or CVB investigation using the Light Microscopy Module.

(Image courtesy of NASA)

Dr. William Meyer, who works with scientistsaround the country to develop and complete their investigations using the LMM,recently gave a talk highlighting the microscope at the 2010 conference for theAmerican Institute for Aeronautics and Astronautics, known as AIAA. Accordingto Dr. Meyer, “the LMM is going to provide insights into many classes ofsamples because it provides a microscopic view of samples, which does notrequire theory to provide a bridge to understand what is going on [at themicro- and nanoscales].” 


This 3-Dimage displays some LMM-ACE confocal imaging goals.
(Image courtesy of Dr. Peter Lu, Harvard)

APowerful Lens to Microscale Phenomena in Microgravity

The LMM concept is a modifiedcommercial research imaging light microscope with powerful diagnostic hardwareand interfaces. It creates a cutting edge facility that enables microgravityresearch at a microscopic level.

There are a variety of differentphysics, biology, and engineering experiments already scheduled to use the LMM.One such experiment, the Constrained Vapor Bubble experiment orCVB, is a jointcollaboration between NASA and Peter C. Wayner, Jr., Ph.D. of Rensselaer Polytechnic Institute. CVBinvestigates heat conductance in microgravity as a function of liquid volumeand heat flow rate to determine the heat transport process characteristics in acurved liquid film. The data from this experiment may help scientists andengineers develop reliable temperature and environmental control systems forinterplanetary travel. The information from CVB may also lead to improveddesigns of systems for cooling critical components in microelectronic devices hereon Earth.

VisualizingMolecular Machines

The LMM can also facilitate studies innanotechnology and nanomaterials. Understanding and predicting the forcesbetween nanoscale particles is critical in the design of nanoscale materials. Thescience community is interested in learning more about the forces that regulatemolecular machines, which are crafted for integrationinto new materials and new medicines.

To this end, researchers such as Dr.David Weitz and Dr. Peter Lu with Harvard University, Dr. Paul Chaikin with NewYork University, Dr. Matthew Lynch with Proctor and Gamble, and Dr. Arjun Yodhwith the University of Pennsylvania, along with NASA Glenn Research Center areworking together to conduct a series of Advanced Colloids Experiments or ACE. This investigation looks at howorder arises out of disorder, colloidal engineering, self-assembly, and phaseseparation. Some of the early microgravity colloids work demonstrated used modelingatoms with hard-sphere colloids to understand this idea of order arising fromdisorder. The ACE experiments may give scientists a better description of themagnitudes of the forces that operate on the nanoscale and how to control them.The potential applications from this work are vast and may apply to such topicsas the design of molecular and biomolecular machines, nanoelectromechanicalsystems, and methods for enhancing the shelf-life of medicines and foods.

Using the LMM facility is just one wayin which an investigator can employ the station to pave a path to success in spaceresearch. Investigators now have a wide variety of instruments at theirdisposal on this orbiting laboratory. The outlook for the International SpaceStation National Laboratory is bright and ready to contribute to the next generationof great discoveries in science.

MoreFunding Opportunities

The LMM is a fixed facility on the space station and is available for use forlaboratory experiments. National Laboratory investigators can use this facilitythrough agencies, such as the National Institutes of Health, the NationalScience Foundation, and the Department of Energy. Researchers who wish to seetheir experiments on the space station can find out how to take advantage ofthe opportunity to use facilities, such as the LMM, by visiting the NationalLaboratory For Researchers Webpage. For specific questions, contact the help line at281-244-6187 or e-mail jsc-iss-payloads-helpline@mail.nasa.gov.

Dr. Peter Boul
NASA’s Johnson Space Center
International SpaceStation Program Science Office

Dr.Peter Boul is the Physical Science and External Facilities Specialist in the InternationalSpace Station Program Scientist’s Office. He is an author to numerous patentsand peer-reviewed publications in nanotechnology. Dr. Boul earned his Ph.D. inchemistry under the tutelage of 1996 Nobel Laureate, Prof. Richard E. Smalley.Following his doctoral studies, he was granted a 2-year postdoctoral fellowshipfrom the French government to work with 1987 Nobel Laureate, Prof. Jean-MarieLehn, in dynamic materials.

Tissue Engineering and the International Space Station

This week, comments from guest blogger,medical doctor, engineer, and astronaut, Dr. David Wolf, as he reflects on tissueengineering in space.

The InternationalSpace Station National Laboratory has an edge for doing unique experiments inmedicine and biotechnology that are not possible anywhere else—we can “turnoff” gravity. As we gear up to fully use the station, the emerging field oftissue engineering is one of our high-value targets. This is a particularlypromising area of study where microgravity research has already made advancesin basic science. Indications are that further work will lead to importantapplications in clinical medicine on Earth.

Building onthe groundwork from earlier programs, biotechnology research on the spacestation, and associated ground-based research in emulated microgravity, hascreated a large body of information. This data collection demonstrates thevalue of controlled gravity systems for assembling and growing 3-Dimensional livingtissue from individual cells and substrates. The NASA-developed Space Bioreactorprovides a core in-vitro capability both in space and on Earth.


Dr. Wolf, on SpaceStation Mir, repairing a faulty valve in the Space Bioreactor,
an instrument for precisely controlling the conditions enabling the culture of 3-D
human tissues in microgravity.
(NASA image)

On Earth,these bioreactors are unique in that they are able to emulate, within limits,the far superior fluid mechanical conditions achieved in space. One may thinkof this Space Bioreactor as a 3-D petri plate. The core of the instrumentationis a rotating fluid filled cylinder, the culture vessel, producing conditionsinside resembling the buoyancy found within the womb. And much like in thehuman body, this vessel is surrounded by a life support system performing thefunctions of the heart and lung, achieving the precisely controlled conditionsnecessary for healthy tissue growth. The importance of this culturetechnique is that fluid mechanical conditions obtained in microgravity—and emulatedon Earth—allow the growth of tissues in the laboratory that cannot be grown anyother way. Emulated microgravity on Earth, and to a much greater degree, the actualmicrogravity of spaceflight enable an extremely gentle and quiescent fluiddynamic environment. The cells and substrates are free to organize into 3-Dtissues without the need to introduce disruptive suspension forces from bladesor stirring mechanisms. This leads to a broad array of applications based onenhanced in-vitro tissue culture techniques.

Theground-based versions of the Space Bioreactor produced very high fidelity colontumors for cancer research, providing strong indications of the value of actualmicrogravity, see Figure 1. Even so, when I first put space grown tissuesamples under the microscope, while aboard the Space Station Mir, I wasastounded! In my many years of experience culturing tissues, I had never seenany so well organized, so healthy, and with such fine structure. Nerve derivedtissue from the adrenal gland was forming long fronds of exceptionally delicatetissue, see Figure 2. What I was seeing could never form on Earth, even in ourstate-of-the-art systems that emulate microgravity.


Figure 1, Anartificially produced colon cancer tumor produced
under emulated microgravity on Earth is composed of millions of
cancerous cells forming a 3-D configuration, much like that
which would form in the human body. Work conducted at NASA
in collaboration with Dr. Kim Jessup.
(Image courtesy of Dr. David Wolf)



Figure 2, Neural-derivedadrenal tissue from a pheochromocytoma –
grown in actual microgravity. Photomicrograph taken by Dr. David Wolf
in work conducted on Mir in collaboration with Dr. Peter Lelkes.
(Image courtesy of Dr. David Wolf)

NASA researchin the Space Bioreactors produced over 25 U.S. patents and the technology isconsidered state-of-the-art for ground-based tissue culture. Scientists aroundthe globe from the National Institutes of Health or NIH, medical centers, and universitieshave produced numerous peer reviewed publications in highly respected journalsand even more patents based on the fundamental principles. Other actualspaceflight research has been successfully used to study breast cancer and prostatecancer. NASA has licensed its patents to spin-off companies including Synthecon, Inc., for commercialmanufacturing of the equipment, and Regenetech,Inc., for regenerative medicine and stem cell applications. These companieshave in turn sublicensed the technology even more broadly, enabling widespreaduse of this NASA-developed technology.

Researchers onEarth use this technology to study cancer, stem cells, diabetes, cartilagegrowth, nerve growth, skin, kidney, liver, heart, blood vessels, infectiousdisease—virtually every tissue in the body. The applications go much furtherthan engineering implantable tissue, to include vaccine production and living ex-vivoorganic life support systems, such as artificial livers. Researchers at the NIH,for instance, used the methods to propagate the HIV virus, responsible forAIDS, in artificial lymph node tissue—itself sustained in the bioreactor. This resultedin the ability to study the virus life cycle under controlled conditions,outside the human body.

But we arenot done. While very capable on Earth, the performance of Earth-boundbioreactors is still limited by the presence of gravity. Spaceflight testing onMir and the space shuttle demonstrate that the growth of larger, better functioning,and more organized tissue may be obtained under true low gravity conditions. Todate, the Space Bioreactor has been exploited primarily for basic research. Duringthe intervening time, the field of medicine has evolved a firm vision towardstrue regenerative tissue technology. In recent years, powerful molecular biologytechniques provided a detailed biological knowledge, which permits understandingcellular machinery almost like micro-machines. This convergence of technologywith the space station laboratory opens a new chapter for space biotechnology.

The InternationalSpace Station National Laboratory now provides an unprecedented opportunity tothe biotechnology community. Within NASA, scientists continue to work to build theinfrastructure to enable the biotechnology community; to help them take thenext steps in exploiting controlled gravity in-vitro systems. The vision is toteam together the very best minds and institutions, leveraging their abilitiesto advance regenerative medicine. Such advances can lead to improving ourquality of life on Earth and serve as a lasting legacy of the space station era.

Dr. David Wolf is anastronaut, medical doctor, and electrical engineer. Having traveled to spacefour times, Dr. Wolf participated in three short-duration space shuttlemissions and a long-duration mission to the Russian Space Station Mir. A nativeof Indianapolis, he participated in seven spacewalks, and the SLS-2 Life SciencesSpacelab Mission, logging over 4,040 hours in space. He received the NASAExceptional Engineering Achievement Medal, the NASA Inventor of the Year Award,among multiple recognitions for his work in advancing 3-D tissue engineeringtechnology.