Meet a Teen with Space Dreams

In today’s post, guestblogger Abigail Harrison—aka, Astronaut Abby—shares her dreams of a career asan astronaut and the exciting ways she’s found to work towards her goal withthe readers of A Lab Aloft.

Myname is Abigail Harrison and I am a 14-year-old aspiring astronaut from Minneapolis,Minn. I have wanted to be an astronaut since I was 7 years old. For the pastcouple of years I have been working to make my dreams a reality and sharing myexperiences through my blog, www.astronautabby.com.I hope to someday be the first person to walk on Mars.

Recently,I witnessed a mind-blowing NASA education event that took place last August atthe Northern Star Boy Scout Council’s Base Camp facility at Fort Snelling, Minn.I was lucky enough to watch an InternationalSpace Station downlink, which is a live video connection between theastronauts aboard the space station and students here on Earth. Participantsasked the crew questions about food, living and working conditions, and thescience done in space. The astronauts spoke highly of their internationalcompatriots and I was really inspired by the cooperation between everyoneaboard.


Avideo still from the live downlink on August 9, 2011, with NASA astronauts RonGaran and Mike Fossum.
(Credit: NASA)

Whileattending this live downlink, I was amazed that there were nearly 400 kids in theaudience. Seeing the wonder on the many young faces as astronauts, who were simultaneouslyorbiting the Earth, answered their questions was phenomenal. I truly believethat moments like this can change lives, as it did for myself and likely everystudent in that room.

Seeinginstances of awe like I did at the downlink motivates me to pursue my own dreamof being an astronaut. I hope that I can someday inspire others, too. Myfriends, who were with me, were likewise motivated—not to be astronauts, asthat’s not their dream, but to be great in their own chosen paths, such ascardiovascular surgery, paleontology and mathematics. Whatever goal you have,it feels so much closer to coming true when you experience others living theirdreams in reality, like the crew is doing in space. It’s amazing!

Iknow that NASA has made a profound impact on me. I work harder in school sothat I can follow my aeronautic ambition. Although not everyone is interestedin a career in aerospace, NASA is still a great inspiration for almost anyone. Theiremployees demonstrate a high work ethic and determination to get the job done.They are incredible role models.


AbigailHarrison takes a test drive in a model of the Manned Maneuvering Unit, or MMU, as part of her experience at Space Camp at the U.S. Space and Rocket Center in Huntsville, Ala. in 2011.
(Credit: www.astronautabby.com)

Throughmy own experiences with my blog and my twitter account—@astronautabby—I have found thatthe people who work with NASA tend to be very helpful to fans like me. I thinkthis is part of what makes NASA so great, their community outreach. Theemployees are truly interested in encouraging students to find a desire tolearn. One example I have of amazing NASA employees is Susan Freeman, a spacestation engineer whom I met on Twitter. She was a tremendous help to me on ahistory day project, providing me with a personal phone interview.

Eversince I started my blog, nearly a year and a half ago, I have received commentsand messages from kids throughout the country and around the world. Many of themexpress similar interests to mine: science, math, engineering and astronomy,with a common goal of space travel. The international comments that I receiveoften consist of congratulations on my dreams and a reminder of how fortunate Iam to be a part of a culture where math, science and space travel are so highlyregarded and encouraged.

Weare lucky to live in a country with a space program that focuses on not onlyexploring space, but also on educating our youth. I agree whole-heartedly withall of these students in that we are incredibly fortunate that NASA providesthe amazing opportunities and learning experiences that it does. Some of theseprograms are ones that I have participated in. These include, but not limitedto Space Camp, high altitude ballooning and the space station live downlink.


AbigailHarrison simulates landing the space shuttle at Space Camp at the U.S. Space and Rocket Center in Huntsville, Ala. in 2011.
(Credit: www.astronautabby.com)

Tolocate programs like these near you, you can check out NASA’s Website, the newspaper, your school orany science groups such as a museum or robotics group near you. Gettinginvolved in NASA programs is a great step, but there are also a lot of otherinteresting science and aerospace groups out there. A couple of my favorites include:

  • Girls in Engineering, Mathematics and Science, or GEMS
  • Guys in Science and Engineering, or GISE
  • Scouts of America
  • MathCounts
  • Mad Science Group
  • Science Bowl
  • State astronomy leagues
  • The Civilian Air Patrol, or CAP
  • ZERO ROBOTICS (an annual robotics and programming competition, with final rounds led by astronauts aboard the space station.)

Onemore way that you can get connected is online, much like I am doing right now.Blogging and tweeting is a great way to connect with scientists and studentsall over the world. For instance, if you want to learn more about the researchand technology done on the space station, you can follow their Twitter account:@ISS_Research. It doesn’t takevery much time and is an easy way to build a network of people who can answerany questions you might have.

NASAand the space station provide inspiration to people everyday. NASA is a hugesupporter of education and continues to advance our society by motivating andencouraging kids to continue becoming scientists, engineers and inventers. Sowhy miss out on all the exciting opportunities they have to offer? Go for itand get involved! Follow your dream and it just might take you to the stars.


AbigailHarrison
(Credit: www.astronautabby.com)

Abigail Harrison is ateen who hopes to someday be an astronaut. She enjoys math and science andparticipates in Girls in Engineering Math and Science, or GEMS. She is also amember of her school’s first-ranked Science Bowl team and of the MinnesotaAstronomical Society. Abigail has a blog called AstronautAbby, which she usesto share her love of aeronautics with others.

When Finding Nothing Means Discovering Something

In today’s blog, Dr. Sara Zwart shares with thereaders of A Lab Aloft her thoughts and experiences as a scientist, includinghow sometimes data showing nothing can actually indicate something!

It’salways exciting to make new scientific discoveries. But though it may soundcounter intuitive, sometimes it can be just as important to find nothing. When looking at researchresults, a lack of change can actually indicate that you have found something, which can lead tounanticipated, but amazing discoveries. This has happened twice in the pastyear at NASA’s Nutritional Biochemistry Laboratory as part of the NutritionalStatus Assessment experiment, or Nutrition.

Thegoal of the Nutrition study is to understand what changes in an astronaut’shealth while they live aboard the International Space Station. Improvedknowledge in how humans react to living in space for long durations can helpprepare NASA for future exploration to Mars, as well as help in understanding howwell current efforts to counteract the negative effects of microgravity work.These countermeasures include exercise and a carefully planned diet, among otherthings.

Forthis study, astronauts collect blood and urine samples during flight, as well onthe ground during the routine pre- and postflight testing. Before they fly, crewmembers train on how to take blood from each other or from themselves, and theyalso can practice collecting urine, which can be tricky in microgravity!


Groundtraining helps to prepare the crew for sample collection for the NutritionalStatus Assessment experiment, or Nutrition. (NASA Image JSC2006E27274)

Uponreturn to Earth, crew member samples are analyzed for a broad range ofchemicals and biochemicals, from nutrients to bone and muscle markers tohormones and other compounds. One of the nutrients we study is vitamin K, whichis a crucial vitamin for blood clotting, and it also has an important role in maintainingbone health. 

Earlystudies from the space station Mir provided evidence that vitamin K status maybe lower during space flight, and researchers suggested that vitamin K shouldbe investigated as a potential countermeasure for bone loss. Those earlystudies on Mir involved only one or two crew members, and a food system differentfrom the one we use today on station. 


Acrew member works with test samples in the Human Research Facility 2 (HRF-2)Refrigerated Centrifuge as a part of the Nutritional Status Assessment(Nutrition) experiment in the Columbus laboratory of the International SpaceStation. (Credit: NASA)

ForNutrition, we measured vitamin K status from markers in the blood and urine in15 station crew members at five different time points during their mission. Wefound no evidence for decrements in vitamin K status. In other words, vitamin Kis still important for health, blood and bones, but there is no evidence thatmore would be better.

Thesetypes of “negative” findings are important. In this case, we learned that thecurrent space food system is sufficient to maintain vitamin K status inastronauts. What’s further, at this time there is no basis for recommendingvitamin K supplements to prevent bone loss that occurs during space flight. 


ANASA astronaut places samples into the Minus Eighty Laboratory Freezer for ISS(MELFI-1).
(Credit: NASA)

Hormonescan be measured in the crew’s blood and urine samples, providing valuableinformation on a number of the body’s systems. One hormone that we measured aspart of the Nutrition study was testosterone. This is an important hormone inthe body for building up and maintaining bone and muscle mass. 

Someearlier studies suggested that there may be lower levels of testosterone inastronauts during space flight, which may contribute to some of the observed boneand muscle loss. As part of this study, we measured the blood levels of testosteroneat five different time points during space flight to test this hypothesis.Again, 15 station crew members provided samples, however the analysis showedthat no changes to testosterone occurred during flight. 

Oncemore, these negative findings provided important information in working tounderstand how the human body adapts to microgravity exposure. This is especiallytrue when we consider ways to counteract some of the known negative effects ofweightlessness, including bone and muscle loss. By narrowing the causes ofthese concerns to human health in space, we get closer to identifying the rootcauses and providing significant countermeasures.

Sara Zwart, Ph.D., and hercolleague Scott Smith, Ph.D., lead NASA’s Nutritional Biochemistry Lab atJohnson Space Center. The testosterone research discussed above was publishedin the Journal of ClinicalEndocrinology and Metabolism (epub:doi:10.1210/jc.2011-2233), and the vitamin K work was published in the Journalof Bone and Mineral Research (26:948-54,2011). In addition to ground-research studies, Zwart and Smith lead two spacestation experiments, NutritionalStatus Assessment and ProK, in which they investigate the roles of animal protein and potassium inmitigating bone loss.

Welcoming New Management to Space Station National Laboratory

The Center for the Advancement of Science In Space, knownas CASIS, introduced itself this fall to the community of existing National Labpartners as the new non-profit organization that will manage the National Labon behalf of NASA. CASIS was founded specifically to fulfill the statutoryrequirement from Congress that a non-profit entity be engaged by NASA tostimulate, develop, and manage non-NASA U.S. use of the space station. On theNASA side, we are excited to start meeting our new CASIS colleagues as transitionwork begins.

The primary mission of CASIS is threefold:

  • Maximize the value of the space station to the nation through both research and development and STEM education activities.
  • Stimulate use of the station by other agencies, academia, and private firms.
  • Develop tools and techniques to communicate the value of the work done on the station and increase the return on the taxpayer investment.

CASIS intends to accomplish this mission by building astrong, interconnected community, which ties together investigators at anylevel of progress down a particular research pathway, provides both private andpublic sources of funding, and engages experts in science and economics who canadvise the community on technical matters and provide an independent valuationof a particular line of research.

These pathways will connect basic and applied research tothe resulting mission and market applications. The goal is to shorten theoverall cycle time by evaluating projects in terms of the bigger picture andwith an understanding of their added value. As a non-profit, CASIS can alsobring in visionary, speculative, and commercial funding sources, whereappropriate, in the research process by recruiting backers who are seeking thevalue the project provides.


The International Space Station (NASA Image)

CASIS will sponsor both a Science Collegium and anEconomic Collegium to examine the scientific feasibility and economic value ofproposals brought forward to the non-profit, using a value-added approach tocomplement scientific review, as well as proven algorithms for economicvaluation. These valuation models will be benchmarked against real world datafrom existing National Lab partners before they are formally implemented.

All of these various elements will come together in whatCASIS calls, the “Marketplace,” where researchers can seek funding andpartnerships, implementation partners can offer their expertise with flighthardware and integration services, investors can look for promisingopportunities, and all the various participants can negotiate innovativepartnerships and collaborations with the help of CASIS.

Through its initial seed funding from NASA, as well aspartnerships with private investors and other government agencies, CASIS willsponsor annual grant solicitations designed to bolster research lines,education programs, and technology development projects assessed by the Scienceand Economic Collegiums as having particular merit and value. This willcontinue over the 10-year cooperative agreement between NASA and CASIS, whichhas a five-year extension option.

The CASIS concept of operations will further develop overthe next year as the organization grows and the Collegiums form. The transitionwill include CASIS progressively taking on more of the payload developmentsupport and research prioritization roles, while the International SpaceStation National Lab Office at NASA’s Johnson Space Center facilitates thehandover with existing partners. 

Learn more and keep up-to-date with this promising newcollaborative model between CASIS and NASA at: http://www.iss-casis.org/

Presentations from the CASIS Kickoff Meeting can be foundat: https://www.nasa.gov/mission_pages/station/research/nlab/index.html


The Center for theAdvancement of Science In Space, known as CASIS, official logo.
(CASIS Image)

Justin Kugler, strategic relationships managerfor the International Space Station National Lab Office, worked with CASISleaders in developing this initial blog. Stand by for more details as CASISestablishes their organization for enabling new research on the space station. 

A Lab for Science, and for Thinking

A Lab Aloft is pleased to republish a recent blog entry from NASA Astronaut Don Pettit. He is currently living aboard the International Space Station and conducting research on the orbiting laboratory. We hope you will enjoy his unique perspective on science in the frontier of space!

The International Space Station was conceived and constructed through the cooperation of fifteen nations. Now, with its construction complete, we can focus on how best to use it.

We have built a laboratory located on the premier frontier of our era. Our Earth-honed intuition no longer applies in this orbital environment. On frontiers, things do not behave the way we think they should, and our preconceived notions are altered by observations. That makes it rich in potential for discovery. The answers are not in the back of the book, and sometimes even the questions themselves may not be known.


Getting ready to insert biological samples in the Minus Eighty Laboratory Freezer for ISS (MELFI-1) in the Kibo lab.

On the Station we can use reduced gravity as an experimental variable for long periods of time. We have access to high vacuum, at enormous pumping rates. (The rate at which space can suck away gas, hence its ability to provide a region devoid of molecules, far outpaces anything we can do on Earth.) We are beyond the majority of our atmosphere, which lets us touch the near-space environment where solar wind, cosmic rays, and atomic oxygen abound. Such cosmic detritus, unavailable for study within our atmosphere, holds some answers to the construction of our universe and how our small planet fits into the picture.

The Station as a laboratory offers most of the features that Earth-borne laboratories have, including a good selection of experimental equipment, supplies, and a well-characterized environment (temperature, pressure, humidity, gas composition, etc.). There is generous electric power, high data-rate communications, significant crew work hours (the fraction of hours spent on science per crew day on Space Station is commensurate with the fraction for other science frontiers such as Antarctica and the deep ocean), and extended observational periods ranging from weeks to years. All this is conducted with a healthy blend of robots and humans, working together hand-in-end-effector, each contributing what each does best. Only on Earth is there a perceived friction between robots and humans.

In this orbital laboratory, we can iterate experimental procedures. We can try something, fail, go back to our chalk board, think, (we now have the time for this luxury) and try it all over again. We can iterate on the iteration. We now have continuous human presence, and time to see the unexpected and act upon it in unplanned ways. Sometimes these odd observations become the basis for studies totally different from those originally planned; sometimes those studies prove to be more valuable. And on this frontier the questions and answers mold each other in Yin-Yang fashion until reaching a natural endpoint or the funding runs out, whichever comes first. This is science at its best, and now, for the first time, we have a laboratory in space that allows us to do research in a way comparable to how we do it on Earth.

So what questions are ripe for study on the Station? What possible areas of research might bear fruit? We have a few ideas.

One area is the study of life on Earth. Life has survived for billions of years, during which temperatures, pressures, chemical potentials, radiation, and other factors have varied widely. Life always adapts and (mostly) survives. Yet there is one parameter that has remained constant for billions of years, as if our planet was the most tender of incubators. Now for the first time in the evolution of life, we humans can systematically tweak the gravity knob and probe its effect on living creatures. And we can change the magnitude of gravity by a factor of one million. Try changing other life-giving parameters, perhaps temperature, by a factor of one million and see how long it takes a hapless life form to shrivel up and die! The fact that gravity can be changed by many orders of magnitude and life can continue is, in itself, an amazing discovery. So now we have a laboratory to probe in-depth the effects of microgravity on living organisms.

The discovery of fire (or rather its harnessing) was a significant advance that allowed humans to transcend what we were to become what we are now. Well before Galileo and Newton dissected the basic formulations of gravity, humans intuitively understood that heat rises. We empirically learned how to fan the flames. But fire as we know it on Earth requires gravity. Without gravity-driven convection, it will consume its local supply of oxygen and snuff itself out as effectively as if smothered by a fire extinguisher. Questions about fire (up here we prefer the term “combustion”) are ripe for a place where we can tinker with the gravity knob.

Another invention, the wheel, literally carried us into the Industrial Age. Ironically, that particular tool is rendered obsolete on a frontier where one can move the heaviest of burdens with a small push of the fingertips. In space the problem is not how to move an object, but how to make it stay put. Perhaps the invention of the bungee cord and Velcro will be the space-equivalent to the development of the wheel on Earth. Such shifts in thought and perspective, some seemingly minor, happen when you observe the commonplace in a new and unfamiliar setting.

We are now told that we may only be seeing about 4 percent of the stuff that our universe is made of (which raises the question, what is the other 96 percent?). Some questions about fundamental physics can only be made outside our atmosphere or away from the effects of gravity. The International Space Station, contaminated with human-induced vibrations, may not be the ideal platform for these observations, but it is currently in orbit and is available to be used. Many of these experiments are like remora fish, latching onto an opportune shark for a sure ride instead of waiting for the ideal shark to swim by. And we pesky humans, even though we cause vibration, occasionally come in handy when some unexpected problem requires a tweak, a wrench, or simply a swift kick.

Although we have preconceived ideas about how the International Space Station can be utilized, benefits of an unquantifiable nature will slowly emerge and probably will be recognized only in hindsight. The Station offers us perspective; it allows us to question how humans behave on this planet in ways that you can’t when you live there.


Don Pettit holds a bachelor of science degree in chemical engineering from Oregon State University and a doctorate in chemical engineering from the University of Arizona. He was selected by NASA as an astronaut in 1996. He is a veteran of three spaceflights and is currently aboard the International Space Station  as part of the Expedition 30/31 crew. Pettit is scheduled to live and work aboard the station until May 2012.



Space Innovation and Mobile Healthcare

In today’s A Lab Aloft, our guest blogger is the Director of NASA’s Human Health and Performance Center, Dr. Jeffrey Davis. This center fosters a collaboration between space and Earth research and technologies. Dr. Davis shares with readers the potential behind cooperative efforts during the development stages of projects.

Mobile healthcare is the focus for the upcoming NASA Human Health and Performance Center, or NHHPC, Workshop, scheduled for June 7 in Washington, D.C., as part of D.C. Health Data and Innovation Week. This is our third workshop, and topics of interest include not only terrestrial global health issues, but also technologies for smartphone applications to collect data, to inform patients, to connect patients with their providers, etc.


A collaborative moment from the NASA Human Health and Performance Center Workshop, Jan. 19, 2011. (NASA Image)

For everything developed through the NHHPC, we would like to see an Earth and space application, as well as a transfer of knowledge in both directions. NASA technology could be adapted to terrestrial health issues, via spinoffs and other applications, but we hope to pull in ideas that exist in the public domain for the mutual benefit of everyone. That is the concept behind the center, to connect people and employ that bridge in both directions to benefit spaceflight and life on Earth.

While there are a number of projects ongoing between members, for this blog I am focusing on the Colorimetric Solid Phase Extraction, or CSPE, technology. This is a great example, because it’s different from flying a commercial off-the-shelf device on the International Space Station. It has the potential for development in more than one application.

The CSPE is a paint chip identification device originally designed to match paint colors. The technology was adapted, however, to measure silver and iodine in water and it is now flying on the space station for this purpose. Called the Colorimetric Water Quality Monitoring Kit, this tool enables the measurement of biocides found in water on orbit to allow for safe drinking water for the crew.


NASA astronaut Nicole Stott, Expedition 21 flight engineer, conducts a water quality analysis using the Colorimetric Water Quality Monitoring Kit, or CWQMK, in the Destiny laboratory of the International Space Station. (NASA Image)

There are additional Earth benefits that could derive from the CSPE. It has the potential to be modified to measure arsenic and lead in water, which are global public health concerns. This other capability is not yet developed, but it is a great example of how an innovative design from a non-biomedical piece of equipment can have mutual space and Earth applications.

Through the NHHPC, we hope to find technology applications for space flight or that can use the space station as a testbed for evaluation in later flights. When we are able to fly technologies early in their development on station, we have the benefit of visualizing how the orbiting lab works as a platform for planning purposes.

The inverse of this is that as we continue to learn more about human adaptation to long duration space flight, we can expand that knowledge base through our member organizations and derive how existing NASA technologies or future technologies might adapt for Earth benefits. What we have found is that by approaching problem solving early enough with the NHHPC members, we can preemptively address issues or requirement questions. Creating a device that is low weight, low power and robust parallels many healthcare concerns, especially for remotely located populations.

We find that by asking the right questions, we can connect people in the early phases of technology planning and development. Technology sharing can always occur, but the goal is to identify common issues for use as collaboration platforms that can eventually turn into projects.


The NASA Human Health and Performance Center logo, showing the core goals of collaboration, innovation, and education in global human health and performance efforts in spaceflight between NASA and member institutions. (NASA Image)

The NHHPC is a global, collaborative virtual center designed to convene government, industry, academic, and non-profit organizations that support the advancement of human health and performance innovations for space flight, commercial aviation, and challenging environments on Earth. Our member organizations participate in face-to-face workshops, webcasts, and virtual working groups to address issues, share best practices, and formulate collaborative projects in various areas, including innovation, education, human health and technology development. You can read more about the NHHPC events and developments on our website and follow us on Twitter via @NASAHumanHealth.


Jeffrey R. Davis, MD, MS
NHHPC Director

Johnson Space Center

Jeffrey R. Davis, MD, MS, currently serves as Director, Space Life Sciences, and as the Chief Medical Officer for the NASA’s Johnson Space Center. Dr. Davis’ past positions include Professor, Preventive Medicine and Community Health at the University of Texas Medical Branch; Corporate Medical Director, American Airlines; and Chief, Medical Operations NASA Johnson Space Center.



Part of the Mission, Part of the Science

In today’s A Lab Aloft entry, guest blogger and European Space Agency astronaut Christer Fuglesang talks about his role as a test subject while living aboard the International Space Station.

You may not know it, but being an astronaut also means being a guinea pig. A lot of the research done in space is about humans, in particular how our bodies are affected by the weightlessness. This is important to know in order to prepare ourselves for future human exploration, like when we will travel to Mars. But this research also gives us many new insights in how our bodily systems work. This knowledge can help scientists and doctors to improve medical treatments here on Earth. They can even find new and better ways to prevent illnesses based on microgravity studies.


European Space Agency astronauts Frank De Winne and Christer Fuglesang photographed during the installation of the new Minus Eighty Degree Laboratory Freezer for ISS, or MELFI, in the Destiny laboratory of the International Space Station. (NASA Image)

Virtually every astronaut that has ever gone into space has participated in medical experiments as a test subject – or as I like to call it, a guinea pig. The inhabitants of the International Space Station almost daily have some activity related to human research. During a workout, for instance, we take measurements like blood pressure, heart rate, or body temperature to provide valuable research data.

Some studies, like the Neuroendocrine and Immune Responses in Humans During and After Long Term Stay at ISS, or Immuno, require taking a saliva sample to check the immune system. Then there’s the Nutrition Status Assessment, or Nutrition, which requires blood and urine samples that store in the Minus Eighty Degree Laboratory Freezer for ISS, or MELFI, aboard the station. They later return to the ground for analysis. Another investigation that comes to mind is Bodies In the Space Environment: Relative Contributions of Internal and External Cues to Self – Orientation, During and After Zero Gravity Exposure, or BISE, which measures brainwaves while the astronaut performing some visual tasks to investigate how microgravity affects the neurological system.


European Space Agency astronaut Christer Fuglesang trains for the Otolith Assessment During Postflight Re-adaptation, or Otolith, investigation prior to his departure to the International Space Station. (Credit: Christer Fuglesang)

It seems that almost every system in our bodies gets more or less affected by weightlessness: from muscles and bones to cells in the immune system, from the heart and lungs to eyes and the balance organs in the ears. Humans are designed to live in a 1-g environment, making their long-term exposure to microgravity a fascinating and biologically altering study of the entire body.

In my case, I have specifically participated in several experiments related to the balance system, or vestibular system, such as the Otolith Assessment During Postflight Re-adaptation, or Otolith, and the Ambiguous Tilt and Translation Motion Cues After Space Flight, or Zag. Before and after my flights, I stood on wobbling plates and sat in spinning and sliding chairs, trying to keep my balance or perform some set of actions.

Meanwhile, scientists observed me and compared my responses from before flight with how I performed right after about two weeks in weightlessness. They also looked into how my balance regained normality during the week after returning to Earth. This helped them to understand new things about how humans keep our balance. This  knowledge may eventually help doctors to better diagnose people who have medical disorders like disorientation and nausea.


Canadian astronaut Robert B. Thirsk wears sensors and hardware in preparation for the Canal and Otolith Interaction Study, or COIS, another vestibular system investigation. (NASA Image)

In almost all science, doing an experiment one time is not enough. This is particularly true in human research, since each test subject is somewhat different. Therefore, some 10 other astronauts also performed the above-mentioned experiment. As one can understand, with only so many crew members on orbit at a given time, it takes awhile to get enough guinea pigs to complete a round of human research in space.

These studies are well worth it, however, as is the discomfort of sitting in a chair that spins with 400 rotations per minute while sliding sideways. The research is important and yields unique results for the benefits of humans, both in space and on Earth.


Christer Fuglesang
(NASA)

Christer Fuglesang is an astronaut with the European Space Agency, or ESA. He flew as a Mission Specialist with STS-116 and STS-128 to the International Space Station where he participated in multiple extravehicular activities, or EVAs. He is the first Swedish astronaut to fly in space.

Texas Talks Space

In today’s A Lab Aloft, Jessica Nimon, research communications managing editor for NASA’s International Space Station Program Science Office, talks about the impact of interacting with the public during Space Week 2013 in Austin, Texas.

Texas hosts Space Day at the Capitol in Austin every other year as part of Space Week. This year’s theme was “Human Exploration: the Journey Continues.” This was my second time representing the International Space Station Program Science Office to the students, members of the public and legislative staff who attended. I enjoy participating in such events because not only I can share the latest space station research and technology news, but it also gives me a chance to gauge perceptions from the audience I communicate with in my role as a writer and editor at NASA.

Keeping the exploration theme in mind, NASA’s International Space Station Program research and technology display shared a space with the agency’s Commercial Crew Program and Orion vehicle displays. Joining these exhibits in the lower level of the Capitol building’s rotunda were representatives from various commercial space companies, including SpaceX and Blue Origin. The in-the-round exhibit placement seemed symbolic of the partnerships taking place with NASA to continue and expand human space exploration.


Chelsey Bussey, International Space Station Program Science Office research scientist, answers a student’s questions during Space Day at the Capitol 2013 in Austin, Texas. (NASA/James Blair)

My colleagues, Scientific Communications Analyst Amelia Rai and Research Scientist Chelsey Bussey, helped tell the story of the amazing research, technology and educational opportunities and developments from our orbiting laboratory. We shared how the space station is a resource that goes beyond space exploration goals, reaching out to cross boundaries in areas of healthcare, pharmaceutical advancements and industry spinoffs. Some of my personal favorites to highlight include NeuroArm, a lifesaving robotic instrument for brain surgery developed using technology from the space station’s Canadarm, and advances made in vaccine development.

The inspiration shared at such events has the potential to touch not only the 3rd to 8th grade students targeted by Space Day, but also to inspire the imagination of new users with research goals for microgravity research. While speaking with the people visiting our exhibit, at least one scientist expressed interest in how he could use the space station as a platform for his research.


Amelia Rai, NASA scientific communications analyst, shares International Space Station research and technology facts with a visitor to Space Day at the Capitol 2013 in Austin, Texas. (NASA/Jessica Nimon)

One of the more frequent questions we received during the event had to do with NASA’s collaborative efforts with private businesses. Having our industry partners right next to us in the rotunda provided a great opportunity to share the way NASA does business. Visitors were surprised and excited to hear that NASA is working together with private companies to provide avenues for future exploration, as well as resupply and experiment sample return from the International Space Station.

Space Day followed on the heels of South by Southwest (SXSW), a multiday conference and festival highlighting music, film and technology, which also had a space-themed focus this year. Excitement for exploration was still abuzz all over Austin. Although we didn’t attend SXSW, Amelia, Chelsey and I did have our own follow-up activity by attending an Amateur Radio on the International Space Station (ARISS) event on March 20 at the Ann Richards School for Young Women Leaders in Austin. These students, who were not able to visit the Capitol for Space Day, were excited to have a more up close, personal connection with the space station.


Canadian Space Agency astronaut Chris Hadfield conducts an Amateur Radio on the International Space Station session in the Zvezda Service Module. (NASA)

Using a ham radio contact, which lasts for about 10 minutes, the 540 middle and high school girls were able to listen as their peers asked space-related questions directly to space station Commander Chris Hadfield, who answered from aboard the orbiting laboratory. The audience was so attentive you could hear a pin drop while Hadfield spoke!


Ana H. from the Ann Richards School for Young Women Leaders in Austin, Texas, asks a question for Commander Chris Hadfield to answer during an Amateur Radio on the International Space Station connection.(Catherine Serra-Fuentes)

Project Specialist Monica Martinez organized the ARISS event for the school and commented on the impact such an opportunity has on these young women. “The ARISS contact was an experience that truly wowed our entire student body, faculty and administrative team. The girls thought it was one of the best events of this entire school year and loved talking to Commander Hadfield. They were also so ecstatic to see that he had tweeted about our school right after the contact. Our students were inspired by his words and the overall experience.”


Students at the Ann Richards School for Young Women Leaders in Austin, Texas, pose with NASA International Space Station Program Science Office representatives Jessica Nimon (fourth from left, back row), Chelsey Bussey (fifth from left, back row) and Amelia Rai (sixth from left, back row). (Catherine Serra-Fuentes)

The event was followed by a short space station presentation by Amelia, who shared space station facts and talked about some of the benefits for humanity that have already derived from related research and technology. Amelia’s talk was followed by a short question and answer session where the students’ interest in space-related topics and careers was evident, showing a bright future for human endeavors with space research and exploration.


Jessica Nimon, International Space Station Program Science Office research communications managing editor. (NASA)

Jessica Nimon has a background in the aerospace industry as a technical writer and now works with the International Space Station Program Science Office as the Research Communications Managing Editor. Jessica coordinates and composes Web features, blog entries and manages the @ISS_Research Twitter feed to share space station research and technology news with the public. She has a master’s degree in English from the University of Dallas.

 

The International Space Station: Scientific Melting Pot

In today’s A Lab Aloft entry, guest blogger Assistant International Space Station Program Scientist Kirt Costello shares how the various science disciplines studied aboard the International Space Station can work in concert to enhance research goals.

By now, if you are a follower of this blog or just a follower of the International Space Station, you are familiar with the tremendous international effort it took to assemble this laboratory in orbit and bring its facilities up to their full potential. The contributions of 15 nations over the last decade have resulted in this unique resource with its access to the microgravity environment, stable viewpoints of Earth and space, as well as access to the orbital environment—namely radiation and the vacuum of space. But what does the cooperative environment that went into building the station mean for the long term science prospects that are now ramping up to their full potential?

The space station has become a scientific melting pot. Similar to the benefits that immigration brought to North America during the industrial revolution, the station is poised to provide benefits to the scientific community and any young pioneers willing to take up the challenge to use this outpost on the frontier of space. The station is also a U.S. National Laboratory, with research facilities that support human biomedical research, animal and plant physiology, materials science, fluid and combustion physics, remote Earth observations, and advanced engineering and technology demonstrations, side-by-side-by-side.

This multidisciplinary research facility presents a rare opportunity for researchers. The dedicated research facility is still much more common than the multidisciplinary facility, typically limiting researchers to just one field of scientific investigation.   Aboard station the experiments from these vastly different fields literally run right next to one another. The astronauts who make many of these investigations possible often have different scientific backgrounds from the principal investigators they are working with on the ground. This opens the potential for dialogue and insights as the studies progress.

The spirit of cooperation that was required in building the space station is still very much evident  today. Different investigations on board may cooperatively share equipment to accomplish their research objectives, minimizing the cost and mass to launch and maximizing the use of in-orbit resources.

One such example of resource sharing that is possible aboard station is in the sharing of camera equipment and software for the Binary Colloid Alloy Test (BCAT) and the Earth Knowledge Acquired by Middle School Students (EarthKAM). BCAT is a set of fluid physics experiments to examine the traits of super-critical fluids and phase separation of fluids. Meanwhile, EarthKAM is an educational outreach study focusing on remote Earth observation and using the capabilities of the EarthKAM camera to engage students, teachers and researchers in collaborative investigations. These two studies may seem worlds apart, but it is because the BCAT investigation is able to use the automated EarthKAM camera and software that BCAT was able to run many samples without requiring an undue amount of crew time.


EarthKAM equipment set up for a view of the Earth from the orbital perspective of the International Space Station. (NASA)


Astronaut Cady Coleman uses EarthKAM equipment to document an experiment run of the Binary Colloid Alloy Test (BCAT) study aboard the International Space Station. (NASA)

So why is multidisciplinary research a good thing to promote? For one thing, it often leads to innovation. The explanation for this is something we’ve all experienced from time to time. It’s much like when you get stuck on a problem. You can stare at it for hour upon hour and just not see the solution. Yet if the right friend happens along, they might see something you’ve been missing and the problem is solved in next to no time. Frustrating, sure, but sometimes a different perspective is all that is needed to reach a breakthrough.

Multidisciplinary science tries to capitalize on the benefits of having different scientific backgrounds engage and become part of the solution to a complex problem. Admittedly, a physicist and a biologist may look at a problem and see vastly different solutions, but when multiple disciplines and multiple participants work together to solve the same problem it opens the doorway to true innovation.

A great recent example is the interaction between the BCAT-6 principal investigator Matthew Lynch and Expedition 30 crew member Don Pettit. Lynch and Pettit worked together to achieve a more detailed image of the BCAT phase separation sample. Pettit suggested using a laser pointer source on orbit to attempt to reveal any diffraction—when light bends around an object—patterns that showed the structures and phase separation characteristics they were looking for. It worked! Innovation was born at the intersection of fluid physics, optical physics and chemical engineering.


Concept for how diffraction patterns can be detected from suspensions of colloidal particles. Irregular diffraction patterns result from irregular particle spacing, however, the presence of the pattern allows you to know when the colloidal particle groups are within the field of the camera. (Illustration by O.M. Yetfanov. Used with permission Journal of Biotechnology/A.P. Mancuso, O.M. Yetfanov, et. al.,)

Co-location is another obvious advantage of the station as a research platform. To date there have been several investigations directed at in-house resource production, such as Tomatosphere, which run in the LADA greenhouse and the Biomass Production System (BPS), to name a few. Additionally there have been multiple experiments designed to help better understand the burning of fuels in the Combustion Integrate Rack (CIR) and the Microgravity Science Glovebox (MSG), like the FLEX-2, SPICE and SLICE investigations. As a result of such studies, crew members may someday grow their own fruits and vegetables to eat or be able to fuel up the engines of the future.


NASA astronaut Mike Fossum, Expedition 28 flight engineer, inspects a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload with its LADA-01 greenhouse in the Zvezda service module of the International Space Station. (NASA)

When multidisciplinary science is brought into this picture, you can envision not only growing food aboard station, but processing those plants into biofuel and then testing its combustion capabilities. The context evolves into a larger study of in-orbit biofuel suitability. In fact, just because these resources are all available on station, researchers can propose new multidisciplinary studies to spur on scientific innovation.   


A burning heptane droplet during the FLEX investigation on the International Space Station. (NASA)

Another sign of the multidisciplinary research potential on station is the transformation of the American Society for Gravitational and Space Biology (ASGSB) into the American Society for Gravitational and Space Research (ASGSR). At the first ever ASGSR Annual meeting, held in December in New Orleans, researchers and students from a wide range of physical and biological sciences came together to discuss the possibilities and challenges of reduced gravity studies. The opportunity was an enlightening one for scientists in previously separated disciplines to come together and share information on their research programs, including many of the active areas of research done aboard station.

With collaborative efforts like these, the multidisciplinary research potential of the International Spaces Station is already being tapped. It will be exciting to see what discoveries will result from our orbiting, scientific melting pot in the years to come.

Kirt Costello completed a Ph.D. in Space Physics and Astronomy in 1998. While at Rice University, Costello worked on a magnetospheric forecast model used to predict the magnetic field response at the Earth’s surface based on upstream solar wind data. The model was used as a primary forecast model in this field at the Space Environment Center in Boulder, Colo., from 1997-2011. Since 2000, Costello has worked at NASA’s Johnson Space Center as a Thermal and Electrical Power Crew training instructor, as an International Space Station Training Lead, and as a group lead in the Mission Operations Directorate Operations Division. Kirt is now the Assistant International Space Station Program Scientist for National Research. In this position he works with the ISS Program Scientist to advise the ISS Program Manager on the objectives and priorities of science being prepared to fly to the space station.

 

The Tool to Fill the Gaps of our Senses: AMS

In today’s A lab Aloft blog entry, International Space Station Associate Program Scientist Tara Ruttley shares her point of view on the importance of asking the big questions via station research.

When I do public speaking events, people always ask me what’s my favorite investigation. For me it’s usually the Alpha Magnetic Spectrometer, or AMS investigation. This incredible instrument is a particle physics detector mounted to the outside of the International Space Station. The AMS was developed by Professor Samuel Ting, a Nobel Laureate in physics, along with an international collaboration of 16 countries organized by the U.S. Department of Energy.


Estimated distribution of dark matter making up 22 percent of the mass of the universe and dark energy making up 74 percent, with ‘normal’ matter making up only 0.4 percent of the mass of the universe. (NASA)

The goal of AMS is almost like sci-fi, involving the search for dark matter, dark energy, antimatter, and even something called strangelets. You hear about these things growing up and on TV and you wonder, is that real? If you go past the scientific jargon, the purpose of AMS is to answer a fundamental question in our nature. To ask, as we have from the beginning of time, how did the universe begin?

The answer to this question intrigues me, like everyone else, because it inevitably addresses “who are we and what are we doing here?” Everybody would love to know, so we seek the answers the best way that we humans can: pushing technology limits to find evidence in ways that our own human senses cannot.

The researchers behind AMS are trying to get solid data to support one of the more prevalent theories: the big bang. In a nutshell, this theory says that the universe came together, particles condensed, and boom! You got us. It’s a little more complicated than that, but the theory behind it is that for the big bang to even occur, you had to have equal parts matter and antimatter.

Matter is something we can see and feel, it’s all around us and makes up everything. It’s so very obvious! Antimatter is a little more tricky for us. It is the opposite of matter and we can theorize that it exists and even make small, fleeting samples in laboratories. And so we are using AMS to look for these things that we mere mortals aren’t capable of perceiving for ourselves.

AMS’s space shuttle-mounted predecessor actually found evidence of antimatter a few years ago, so we are only teased by this potential and are now prompted to capture the particles in greater, consistent amounts for study. Now we’re ready to collect lots of evidence for antimatter levels that will keep Nobel laureates, post-docs, and graduate students busy analyzing for years. Since its installation on station, which marked a one year anniversary on May 19, AMS has been collecting about a billion observations per month and even the smallest bits of data are going to lead to hundreds of publications. These will cite the importance of AMS findings with a relevance that likely only super smart astrophysicists will understand, and that the rest of us will see in headlines here and there as new evidence unfolds.


A close view of the Alpha Magnetic Spectrometer-2, or AMS, in the space shuttle Endeavour’s payload bay prior to being mounted to the International Space Station’s starboard truss. (NASA)

Using AMS, we record as much data as we can and analyze it here on Earth. This is where we try to tell an ultimate story with it. It’s what we do in science: chip away at a question until we can come to a conclusion that is always just beyond the next discovery. Yet, as exciting as the headlines will be, I actually tend to struggle with what’s next on these findings. I struggle because, since as we gain bits and pieces of knowledge, inevitably we learn not only what we didn’t know, but how much more there is to know.

Can you sense my impatience and excitement?

Observing antimatter is the first data goal that goes back to the big bang theory. The next data set AMS looks for is dark matter or dark energy, which is fun for me because it further proves that there’s more out there than meets the eye. We humans have senses for sight, sound, smell, taste, and touch, but we are limited to the capability of our receptors as we constantly take in our environment. We miss things that could be right there in front of us.

One of the limits of our eyesight, for instance, is that we can only see a certain spectrum of light. We don’t see the ghastly amounts of waves that pass all around us as our wireless devices talk to each other, or our radios blare during our morning jog. Our eyes see only 5 percent of the universe! We can sense that the other 95 percent of the universe exists, however, because we have found tantalizing evidence through research. We are using AMS as an extension of ourselves to fill in the gaps of our senses and help us understand the unknown. This includes the parts that we don’t even know we don’t know yet.


The starboard truss of the International Space Station is featured in this image, including the Alpha Magnetic Spectrometer-2, or AMS, at center left. (NASA)

AMS also is looking for evidence of a type of matter called strangelets. Yes, it does sound … well … strange. This would be a new form of matter that we have theorized existence of, but haven’t found in nature quite yet.

We’re taught in school that all matter is made of atoms, which we thought were the smallest form of matter. Now scientists are finding that atoms are made of even smaller quarks, and the prevailing theory regarding quarks is that there are six different types in the universe. We have classified all matter on Earth as being made up of only three types of quarks. So why does nature need the additional three? Some scientists theorize that there are other forms of matter out there that would be made up of a combination of these six quarks, and they’re calling them strangelets. It is a creative effort to try to answer what and where these strangelets are. Scientists have created such evidence as “strange” and “antistrange quarks” in heavy ion accelerators, which they theorize could lead to strangelet formation, but as of now, a strangelet is still a hypothetical particle. The prospects are endless.

Only the space station is capable of supporting the power and data transfer AMS requires to look for evidence of antimatter, dark matter, dark energy, and strangelets, and it will keep the scientific community busy for years. The human species develops tools like AMS to find the things we might otherwise miss, because we seek answers — lots of answers. It’s our nature.

AMS is an instrument that is taking it all in and ultimately it’s humans who will try to make sense of the information and apply it to what we know or think we know. We’ll learn what we didn’t know and try to tell our own local story. As we advance as a species, we build on that knowledge that may one day expand with the universe, beyond our little planet. It’s a good time to be a science geek.


Tara Ruttley, Ph.D.
(NASA Image)

Tara Ruttley, Ph.D., is Associate Program Scientist for the International Space Station for NASA at Johnson Space Center in Houston. Ruttley previously served as the lead flight hardware engineer for the ISS Health Maintenance System, and later for the ISS Human Research Facility. She has a Bachelor of Science degree in Biology and a Master of Science degree in Mechanical Engineering from Colorado State University, and a Doctor of Philosophy degree in Neuroscience from the University of Texas Medical Branch. Ruttley has authored publications ranging from hardware design to neurological science, and holds a U.S. utility patent.

A Slice of Time Pie

As NASA astronaut Don Pettit readies to return home from his mission aboard the International Space Station, he shares with A Lab Aloft readers the art of time management aboard the orbiting laboratory. Pettit’s blog entry was originally published on his blog, Letters to Earth: Astronaut Don Pettit, on June 22, 2012.

If my day on space station were a pie, it would be sliced into many wedge-shaped slivers.

It begins with a small slice for waking up, hygiene, and a bag of coffee (even in space, it is comforting to have a morning routine). This is followed by a slice for reviewing and organizing the tasks that will make up my work day. I might make a list of tools so that when I float to the tool box, I can gather everything I need in one trip. Then we have a morning conference with mission control.

Our work day then begins, consuming a 12-hour slice of time pie. At the end of the workday, we have another conference with mission control, followed by about an hour of work tying up loose ends. Then there is a slice for crew dinner. It is not unusual to work the whole day without seeing your fellow crew members at all (space station is a big place), and it is important to gather over a meal to exchange stories. This fulfills a very human social requirement, probably done since the discovery of fire, when the tribe would gather around the burning embers after the hunt (we now gather around our electric food warmer).


(Credit: NASA)

This leaves about a nine-hour slice of off-duty time until the whole routine begins anew. Note well that this is not “free time” but “off duty time”—a significant distinction when living on a ship, be it on the ocean or in space. Sleep comes in your off-duty time, and depending on how much you need, determines the size of the leftover slice of personal pie. All of us have families and friends, and if we want to gracefully return to our places on Earth at some point in the future, they require sharing a significant piece of your personal pie. At the end of the day, I am lucky to have an hour slice of truly personal time, often spent in the cupola gazing at the cosmos (writing these essays comes from this slice and competes with window time, which accounts for some of the delays between postings).

By far the largest slice of time pie is the 13-hour on-duty workday. Of this wedge, about 6½ hours is working primary mission tasks. These include scientific and engineering research, operational tasks such as flying the robotic arm and spacewalks, and spacecraft system maintenance/repair. The balance of the workday is spent on the necessary upkeep and overhead to enable the 6½ hours of time on task. This includes our 2½ hours of physical training (maintains crew health), transfer and stowage of new supplies from visiting —Progress, European ATV, Japanese HVT and the commercial vehicles, Dragon and (soon) Cygnus)—inventory and audits of existing supplies, managing our trash, conferences with mission control (some days we will spend 15% of our time talking to them), lunch, toilet, unplanned repairs (e.g. network, laptops, toilet, drinking water problems, etc.), and simply searching for needed items (often times not found in their proper place).

While achieving only 6½ hours work out of every 24 hours on mission tasks may seem appalling, it is commensurate with Earthly efforts when working in harsh frontier environments. When I was deployed with the Antarctic Search for Meteorites (ANSMET) team on a remote glacier field about 200 kilometers from the South Pole, we toiled for about 14 hours a day to enable 6 hours of our mission’s work; hunting for meteorites. A good slice of this Antarctic time pie (obviously a frozen dessert) was taken for such supporting tasks as snowmobile maintenance, gasoline stove fuel management, shoveling snow to keep our Scott tents from becoming buried, latrine maintenance, cooking and food management, melting ice for drinking water (a big time sink), drying sweaty clothing, and simply trying to stay warm. Considering the harshness of the Antarctic interior, it was fortunate we could spend six hours a day on the mission task. The same sorts of numbers are seen in deep ocean efforts, particularly if the divers are living under high-pressure, saturated gas conditions (pressurized living quarters that are at the same pressure as the equivalent ocean work depth). When humans venture into a harsh wilderness, the fraction of time on task shrinks while the effort to simply be there grows. In any of these settings, you are lucky to log six hours of mission tasking and six hours of sleep. The rest of the time is spent simply trying to stay alive.

On weekends we have off-duty time, but never a free weekend. On Saturdays, we are scheduled for six hours of on-duty time, mostly housekeeping duties where we vacuum filters and swab the decks. On Sundays, our lightest workload, we have about 3½ hours of tasking (this includes our 2½ hours of exercise). To date, we have had four weekends in a row where something came up that trumped our off-duty time. One was for an electrical failure in the ATV cargo ship that if uncorrected, would have required an emergency undocking with possible loss of all our new supplies. One was for a possible near collision with a piece of space junk, where we had to close all the hatches to make station “watertight” and then hide in our Soyuz spacecraft. Another was to fix the toilet after it failed, and one was for our regenerative water processor (the coffee machine). During this period we worked over 30 days without a break. When you go to the frontier, you are there to do something productive, not to sip tea and eat bonbons.

Organization is the key to using personal time effectively. I have a 5-, 15-, and 30-minute plan in my pocket, so when there is a pause in the mission work, I know exactly how to use the moment productively. Then, when you truly have a significant span of off-duty time, perhaps on a Saturday night, there is nothing more awe inspiring than floating for an orbit in the cupola and observing the Earth. My personal slice of time pie may be only a sliver, but oh, how sweet it is!

Don’s blog also appears at airspacemag.com.