See the Strawberry Moon – 2021’s Last Supermoon!

Our planet’s natural satellite – better known as the Moon – will appear opposite the Sun and fully illuminated on June 24, 2021, at 18:40 UTC, which is 1:40 p.m. CDT (UTC-5). This full Moon is quite special for two reasons: it’s a Strawberry Moon and the last supermoon of the year!

The Strawberry Moon marks the last full Moon of spring or the first full Moon of summer. Towards the end of June, the Moon usually sits in a lower position in the sky and shines through more of our atmosphere. Because of this, our Moon can sometimes give off a pinkish hue.

supermoon
A supermoon rises behind the U.S. Capitol, Monday, March 9, 2020, in Washington. Credits: NASA/Joel Kowsky

Surprisingly, the name likely has more to do with the time of the year it occurs than its unusual pink shade. Some Native American tribes referred to this full moon as the Strawberry Moon because it signaled a time for gathering ripening strawberries and other fruits.

A supermoon occurs when a full Moon coincides with the Moon’s closet approach to Earth in its elliptical orbit, a point known as perigee. During every 27-day orbit around Earth, the Moon reaches both its perigee, about 226,000 miles from Earth, and its farthest point, or apogee, about 251,000 miles from Earth.

Although supermoon is not an official astronomical term, it’s typically used to describe a full Moon that comes within at least 90% of perigee. In this phase, the Moon appears larger and brighter than usual. A new Moon can also be a supermoon. However, we typically do not see a new Moon since it is between Earth and the Sun, and therefore not illuminated.

If you’re in the daylight at the time of the Super Strawberry Moon, look for a better view during its moonrise, which is about 20 minutes after sunset, local time.

The Super Strawberry Moon will be the last of four supermoons for 2021. Supermoons only happen three to four times a year, and always appear consecutively. The last three supermoons occurred on May 26, April 27, and March 28.

Skywatchers, please enjoy the sunset in the west, and if you look toward the east, you may notice the subtle pink hue of our Super Strawberry Moon!

by Lance D. Davis

June Solstice Brings Summer, Winter Seasons

The June solstice gives us the green light to welcome the summer season in the Northern Hemisphere and winter season in the Southern Hemisphere. This happens June 21, 2021, at 03:32 UTC, but for us in North America, that’s June 20 at 10:32 p.m. CDT (UTC-5).

In meteorology, summer begins on June 1. Yet, June 21 is perhaps the most widely recognized day when summer starts in the northern half of our planet and winter starts in the southern half. This astronomical beginning of the summer season and long-held, universal tradition of celebrating the solstice have allowed us to treasure this time of warmth and light.

Summer solstice explanation
During the solstices, Earth reaches a point where its tilt is at the greatest angle to the plane of its orbit, causing one hemisphere to receive more daylight than the other. Credits: NASA/Genna Duberstein

Along with marking the beginning of summer, this will also be the longest day of the year in the Northern Hemisphere. We will begin to see early dawns, long days, late sunsets, and short nights. On the solstice, our Sun will reach its highest point as it crosses the sky. Meanwhile, south of the equator, winter will begin!

The ancient cultures knew that the Sun’s path across the sky, length of daylight, and location of the sunrise and sunset all shifted in a regular way throughout the year. Additionally, people built monuments, like Stonehenge, to follow the Sun’s annual progress, to worship the Sun, and to predict its movements.

Earth's seasons
Click to view larger. Credit: NASA/Space Place

Today, we celebrate the solstice as an astronomical event caused by Earth’s tilt on its axis and its motion in orbit around the Sun.

Earth’s axis may be imagined as an imaginary pole going right through the center of our planet from “top” to “bottom.” Earth spins around this pole, making one complete turn each day. That is why we have day and night, and why every part of Earth’s surface gets some of each.

Earth doesn’t orbit upright; its axis is always tilted 23.5˚ with respect to the Sun-Earth line, which is why we have seasons. During the June solstice compared to any other time of the year, the north pole is tipped more directly toward the Sun, and the south pole is tipped more directly away from the Sun. As a result, all locations north of the equator see days longer than 12 hours and all locations south see days shorter than 12 hours.

Enjoy the new season – whichever half of the globe you’re in!

by Lance D. Davis