Cool Flames on the International Space Station – An Anatomy of Discovery

In today’s A Lab Aloft, Mike Hicks, project scientist at NASA’s Glenn Research Center in Cleveland, blogs about discovering the “cool” world of combustion aboard the International Space Station.

In a recent posting on this blog one of our International Space Station combustion researchers, Sandra Olson, noted that when it comes to combustion experiments in microgravity one should expect surprises. This has certainly proven to be true with one of our liquid fuel combustion investigations currently operating aboard the space station.

The Flammability and Extinction (FLEX) study burns liquid fuels dispensed in the form of small, single droplets. The goal is to answer two key questions: the first is how difficult it is to keep a flame burning in microgravity? We call this flammability mapping. The second is how effective is gaseous carbon dioxide (CO2) (or other diluents) in extinguishing spacecraft fires? Gaseous CO2 is particularly important because this is the current fire suppressant used in the U.S. module of the space station.

To answer these and other “burning questions” the FLEX team of scientists studies small droplets of fuel. This approach allows a large number of tests to take place under a wide range of conditions. The flame that results from igniting these fuel droplets (ranging in size from 1.0 mm to 6.0 mm in diameter) achieves a shape that can only happen in a reduced gravity environment—that is, they become little glowing balls of fire.

Image of a burning droplet in microgravity during a Flammability and Extinction (FLEX) test aboard the International Space Station. (NASA)
Image of a burning droplet in microgravity during a Flammability and Extinction (FLEX) test aboard the International Space Station. (NASA)

Within fractions of a second following ignition, the reaction front—visualized as a flame—quickly wraps around the fuel droplet and assumes a spherical shape. This remains mostly motionless until the droplet of fuel is consumed or until the conditions are such that the flame can no longer exist. You can watch the Strange Flames on the International Space Station video to see these microgravity flames in action.

The overarching goal of FLEX is to better understand the complicated physical processes behind determining whether or not a flame can exist in a given environment for a given fuel type. The environment varies based on the amount of oxygen in the combustion chamber along with other gases that balance out the test atmosphere.

Since combustion processes are rich in physics and chemistry, there are many parameters that play a role in flame survival. The FLEX experiments allow scientists a way to study these competing physical processes—such as the rate of fuel consumption, fuel characteristics, the controlling energy and mass transfer processes, and the physical properties of the gases that make up the test environment. By understanding and modeling these processes, we hope to better predict fire behavior in space. This also leads to Earth technology advances, such as more fuel efficient engine designs.

FLEX recently led us to a “cool” discovery, igniting the imaginations of many combustion researchers. During one of their many late night test sessions, the FLEX operations team noticed a very peculiar orange afterglow about 20 seconds after the flame had extinguished. It was so intense that the team first thought something else other than the fuel droplet was burning.

A cloud of condensed fuel, like a fog, forms around the heptane fuel droplet following its dual-stage extinguishment in the FLEX investigation. (NASA)
A cloud of condensed fuel, like a fog, forms around the heptane fuel droplet following its dual-stage extinguishment in the FLEX investigation. (NASA)

After a few repeated tests, the team concluded that this bright afterglow resulted from tiny droplets of re-condensed fuel vapor. The idea was that these tiny droplets formed a fog, scattering the yellow-orange backlight that is used to project the droplet’s shadow onto one of the diagnostic cameras. The afterglow was initially dismissed as an artifact of the test configuration—or so we thought.

A few days later we recovered the data from the space station and processed the images for accurate measurements. As we looked closely at the droplet shadow images we realized this glow was actually a clue to something new.

Typically when a flame extinguishes, the evaporation of the fuel droplet will nearly stop, and the droplet stops shrinking, which makes entirely good sense—no flame, well then, no fuel consumption. We discovered with FLEX that under certain conditions when the flame disappeared, the droplet of fuel continued to evaporate at almost the same rate as when the flame was visible. In many cases this “apparent” fuel consumption without a flame lasted longer than with the flame.

Video screen shot of a FLEX ignition test for a ~2.5 mm methanol fuel droplet formed on tip of needle. (NASA)
Video screen shot of a FLEX ignition test for a ~2.5 mm methanol fuel droplet formed on tip of needle. (NASA)

Even more startling, we saw that when the pressure of the chamber was slightly increased, the flame momentarily reappeared in a brief flash before quickly going out again. In some cases this phenomena repeated until the fuel was consumed. This finding has a number of interesting ramifications, both from a purely scientific perspective as well as from a fire safety perspective. It provides the first direct observation of a long held concern—the possibility that microgravity conditions were conducive to re-ignition of flammable mixtures.

Ignition of 4.5 mm droplet on tethering fibers (crossed fibers shown as glowing lines) developing into a large weak flame which quickly extinguishes (t = 10.8 seconds), followed by period of low-temperature burning (~ 2 seconds) with no visible flame, a brief return to high-temperature burning (for ~ 1.5 seconds at t = 12.9 seconds). This cycle repeated once, until the fuel droplet was completely consumed. (NASA)
Ignition of 4.5 mm droplet on tethering fibers (crossed fibers shown as glowing lines) developing into a large weak flame which quickly extinguishes (t = 10.8 seconds), followed by period of low-temperature burning (~ 2 seconds) with no visible flame, a brief return to high-temperature burning (for ~ 1.5 seconds at t = 12.9 seconds). This cycle repeated once, until the fuel droplet was completely consumed. (NASA)

At first glance, it seemed irrational that the fuel droplet continued to evaporate with no visible flame. Some of the science team argued, myself included, that this could be explained by characteristics of the test chamber environment. It was suggested that once the visible flame extinguished, that there was still a sufficient amount of energy remaining in the surrounding gases to continue the rate of the droplet’s evaporation.

Since buoyant forces are absent in microgravity flames, the hot gases simply remain stationary around the droplet—so we theorized that as these gases cooled, heat transferred back into the droplet. We quickly realized, however, that this would have resulted in a gradual slowing of the droplet’s evaporation rate, which was not the case. During the “dark burning periods” when no flame was visible, the evaporation rates were essentially constant, similar to what is seen with a visible flame. Interestingly, these evaporation rates suddenly stopped when the afterglow of the scattered light began to appear.

In 65 years of previous droplet experiments, and employing a staggering breadth of microgravity test configurations—from converted mine shafts in Japan to experiments performed on the recently retired space shuttles—this phenomena had never been observed. The prior universal observation was that when the flame went out, the rapid evaporation of the droplet stopped. However, with these tests we now had a fuel droplet that continued to be consumed at a rapid rate without an apparent flame.

NASA astronaut Karen Nyberg, Expedition 36 flight engineer, services the Combustion Integrated Rack (CIR) Multi-user Droplet Combustion Apparatus (MDCA) in the International Space Station's Destiny laboratory. This is the facility in which the FLEX investigation tests take place in orbit. (NASA)
NASA astronaut Karen Nyberg, Expedition 36 flight engineer, services the Combustion Integrated Rack (CIR) Multi-user Droplet Combustion Apparatus (MDCA) in the International Space Station’s Destiny laboratory. This is the facility in which the FLEX investigation tests take place in orbit. (NASA)

After a great deal of deliberation, the collective wisdom of the FLEX team came up with a theoretical explanation: “cool flames!” The technical explanation for this phenomena first appeared in Combustion and Flame in an article entitled “Can Cool Flames Support Quasi-Steady Alkane Droplet Burning?

So what exactly is a cool flame and why is it important? The discovery of cool flames is often attributed to Sir Humphry Davy in 1812. While investigating flames for the purpose of designing safety lamps for coal miners, Davy observed that he could generate flames in the lab that were so weak that they could would not even ignite a match. This finding was followed by W.H. Perkins, who published in 1882 the first investigation of cool flames. Perkins observed that vapors of organic fuels produced what he characterized as “blue lambent flames.” Generally speaking, cool flames are the visible light of oxidation reactions occurring at low temperatures, sometimes nearly 10 times less than normal flame temperatures.

This side-by-side image shows a comparison of a flame burning on Earth (left) and a flame in microgravity (right). (NASA)
This side-by-side image shows a comparison of a flame burning on Earth (left) and a flame in microgravity (right). (NASA)

Cool flame temperatures depend on fuel type and atmosphere. For n-heptane—the alkane fuel used in the FLEX experiments—cool flames appear at temperatures just above 600 degrees Fahrenheit. This is about 176 degrees Fahrenheit warmer than the temperature for baking bread and considerably less, by about 1,300 degrees Fahrenheit, than the flame one might roast a marshmallow over. Hence the name “cool flame.”

Despite the name, these flames’ temperatures are still sufficiently high to sustain chemical reactions. Understanding exactly what kind of chemical reactions are taking place, as well as the conditions necessary to propel the chemistry into the high temperature realm of hot flames, are key research areas in the study of cool flames.

Prior to the FLEX discovery, it was thought cool flames were primarily pre-ignition phenomena generally limited to pre-mixed gases. If you’ve ever taken your car in for engine knocking, you’ve experienced an example of this. Pockets of gas in the cylinder undergo low temperature reactions (i.e., cool flames) that result in poorly timed pressure peaks. These deviations from the optimal peak pressure timing that should occur shortly after spark ignition result in the noise often associated with engine knock.

The FLEX study, however, showed a post-ignition cool flame. This occurred in a controlled system where reactants are initially separated, requiring time to travel to the reaction zone, which we see as the flame. This appears as a relatively steady phenomenon, suggesting a delicate balance between heat generated by the reaction and heat losses to the surrounding—to date, only achievable in space.

The microgravity cool flame discovery is significant for a number of reasons. Low temperature combustion in internal combustion engines, for instance, offers a number of advantages: reduced emissions, less wear on engine parts and increased fuel efficiencies. A better understanding of these low temperature burning regimes may help address challenges facing new internal combustion technologies, such as the Homogenous Charge Compression Ignition (HCCI) and Reactivity Charge Compression Ignition (RCCI) engines. Since these technologies lack a spark for localized ignition, knowledge of cool flames may help with precise timing of the combustion event—based, in this case, on a reactant mixture that may only be partially pre-mixed.

Microgravity cool flames are exciting in their own right, because of the potential for refining our understanding of a very complicated combustion phenomena. This is true of all serendipitous discoveries, giving one more example of how the space station provides an opportunity for discoveries that would otherwise never get made.

Mike Hicks is pictured with his granddaughter, Emma, while roasting marshmallows over “cool” flames of another kind.
Mike Hicks is pictured with his granddaughter, Emma, while roasting marshmallows over “cool” flames of another kind. (Image Courtesy of Mike Hicks)

Mike Hicks, project scientist at NASA’s Glenn Research Center in Cleveland, has been with NASA for 22 years and is currently probing the mysteries of droplet combustion as a co-investigator on the Flammability and Extinction (FLEX) study. He is also the principal investigator on the Supercritical Water Mixture (SCWM) International Space Station flight investigation, which is designed to study precipitation phenomena in near-critical water. Hicks spends much of his free time as a doctoral candidate at Case Western Reserve University putting the finishing touches on a dissertation he plans to complete in the fall of 2013.

From Fluids to Flames: The Research Range of Space Station Physical Science

In today’s A Lab Aloft, guest blogger Fred Kohl, Ph.D., International Space Station Physical Sciences Research project manager at NASA’s Glenn Research Center in Cleveland, talks about some of the physical science investigations that take place in microgravity aboard the space station.

Extremes are part of exploration, whether you’re talking about space travel or probing new areas of discovery to expand knowledge in a given science. So it is appropriate that the extreme environment of the International Space Station provides an ideal location to study physical sciences, from flames to fluids.

Removing gravity from the equation aboard this Earth-orbiting laboratory reveals the fundamental aspects of physics hidden by force-dependent phenomena where a fluid phase (i.e., a liquid or gas) is present. Such experiments, which investigate the disciplines of fluid physics, complex fluids, materials science, combustion science, biophysics and fundamental physics, use the station’s specialized experiment hardware to conduct studies that could not be performed on the ground.

The main feature differentiating the space station laboratory from those on Earth is the microgravity acceleration environment that is stable for long periods of time. Conducted in the nearly weightless environment, experiments in these disciplines reveal how physical systems respond to the near absence of buoyancy-driven convection, sedimentation, or sagging. They also reveal how other forces, which are small compared to gravity, can dominate the system behavior in space. For example, capillary forces can enable the flow of fluids in relatively wide channels without the use of a pump.

Other examples of observations in space include boiling in which bubbles do not rise, colloidal systems containing crystalline structures unlike any seen on Earth, and spherical flames burning around fuel droplets. Also observed was a uniform dispersion of tin particles in a liquid lead melt, instead of rising to the top as would happen in Earth’s gravity.

These findings may improve the understanding of material properties, potentially revolutionizing development of new and improved products for use in everything from automotives to airplanes to spacecraft. With so much to learn in the area of physical science and so many investigations, I would like to highlight several studies ongoing, upcoming or recently looked at aboard the space station.

Constrained Vapor Bubble-2 (CVB-2)

Studying mixed fluids in microgravity for CVB-2 provides data to further optimize the performance of wickless heat pipes. These pipes weigh less and have reduced complexity as compared to the more common construction with a wick. The CVB-2 study examines the overall stability, fluid flow characteristics, average heat transfer coefficient in the evaporator, and heat conductance of a constrained vapor bubble under microgravity conditions as a function of vapor volume and heat flow rate.

Findings from this research may lead to more efficient ways to cool electronics and equipment in space, while also applying to advances in Earth technologies such as air conditioning and refrigeration systems. Laptop computers also use this type of heat pipe technology to cool their electronics in order to prevent overheating.

Expedition 23 Flight Engineer T.J. Creamer works to setup Light Microscopy Module (LMM) and Constrained Vapor Bubble (CVB) hardware in the Fluids Integrated Rack (FIR) in the Destiny U.S. Laboratory. (NASA)
Expedition 23 Flight Engineer T.J. Creamer works to setup Light Microscopy Module (LMM) and Constrained Vapor Bubble (CVB) hardware in the Fluids Integrated Rack (FIR) in the Destiny U.S. Laboratory. (NASA)

Advanced Colloids Experiment (ACE)

ACE studies colloidal particles in space for use in modeling atomic systems and engineering new systems. These particles are big enough—in comparison to atoms—to be seen and recorded with a camera for evaluation. Conducting this study aboard the space station removes gravitational jamming and sedimentation so that it is possible to observe how order rises out of disorder, allowing researchers to learn to control this process. This could lead to greater stability and longer shelf life for products on Earth, such as paints, pharmaceuticals and other products based on colloids. Recently we launched additional hardware, consisting of a magnetic mixer and a drill kit, to use in mixing the samples for future ACE experiments.

The magnetic mixer and drill kit (pictured here before launch) will assist with mixing samples for Advanced Colloidal Experiments (ACE) aboard the International Space Station. (NASA)
The magnetic mixer and drill kit (pictured here before launch) will assist with mixing samples for Advanced Colloidal Experiments (ACE) aboard the International Space Station. (NASA)

Capillary Flow Experiment-2 (CFE-2)

The CFE investigation is a suite of fluid physics flight experiments designed to study large-length scale capillary flows and phenomena in low gravity. Testing will probe dynamic effects associated with a moving contact boundary condition, capillary-driven flows in interior corner networks, and critical wetting phenomena in complex geometries. The sample fluids flow in specific directions influenced by the shape of unique cylindrical containers called Interior Corner Flow (ICF) vessels.

For CFE-2 there are 11 units of fluids for astronauts to test. This research and the resulting math models based on the data findings helps with the design of more efficient fuel systems for spacecraft. This is because the engineers will be able to design the shape of the tank to take advantage of the way fluids move in microgravity. On Earth these findings may contribute to models to predict fluid flow for things like ground water transport, as well as the afore mentioned cooling technology advances for electronics.

Expedition 36 Flight Engineer Karen Nyberg conducts a session with a Capillary Flow Experiment (CFE) Interior Corner Flow vessel in the Harmony node of the International Space Station. CFE observes the flow of fluid, in particular capillary phenomena, in microgravity. (NASA)
Expedition 36 Flight Engineer Karen Nyberg conducts a session with a Capillary Flow Experiment (CFE) Interior Corner Flow vessel in the Harmony node of the International Space Station. CFE observes the flow of fluid, in particular capillary phenomena, in microgravity. (NASA)

Flame Extinguishment Experiment – Italian Combustion Experiment for Green Air (FLEX-ICE-GA)

The objective of this investigation is to observe and characterize evaporation and burning of renewable-type fuel droplets in high-pressure conditions. Test runs for this study recently took place in the Combustion Integrated Rack (CIR) aboard station. Research conducted in the CIR facility includes the study of combustion of liquid, gaseous and solid fuels. The CIR is made up of an optics bench, combustion chamber, fuel and oxidizer control, and five different cameras for performing combustion experiments in microgravity.

Researchers can use the results of these experiments to develop and validate thermo-chemical and chemical kinetics computer models of renewable liquid fuels for combustion simulation in engines. This helps with the design of the next generation of fuels and advanced engines. The computer models may reduce costs to industries and benefit the general public by accelerating the adoption of renewable fuels that are environmentally friendly.

NASA astronaut Tom Marshburn servicing the Combustion Integrated Rack (CIR) aboard the Destiny module of the International Space Station. (NASA)
NASA astronaut Tom Marshburn servicing the Combustion Integrated Rack (CIR) aboard the Destiny module of the International Space Station. (NASA)

Supercritical Water Mixture (SCWM)

The SCWM investigation will help researchers look at phase change, solute precipitation, and precipitate transport at near-critical and supercritical conditions of a dilute salt/water mixture. When water is taken into its supercritical phase—a temperature higher than 705 degrees Fahrenheit and a pressure higher than 3,200 psia—it becomes highly compressible and begins to behave much like a dense gas. In its supercritical phase water will experience some rather dramatic changes in its physical properties, such as the sudden precipitation of inorganic salts that are normally highly soluble in water at ambient conditions.

The primary science objectives of the SCWM investigation are to determine the shift in critical point of the liquid-gas phase transition in the presence of the salt, determine the onset and degree of salt precipitation in the supercritical phase as a function of temperature, and to identify the predominant transport processes of the precipitate in the presence of temperature and/or salinity gradients.

On Earth water reclamation from high-salinity aquifers, waste handling for cities and farms, power plants, and numerous commercial processes may benefit from the SCWM findings. A good understanding about the behavior of salt in near-critical and supercritical conditions also would assist designers of the next generation of reactors. With the knowledge gleaned from SCWM, they could possibly design systems that would operate without incurring large maintenance problems.

Sample cell filled with a dilute aqueous solution of sodium sulfate for the Supercritical Water Mixture (SCWM) investigation. (NASA)
Sample cell filled with a dilute aqueous solution of sodium sulfate for the Supercritical Water Mixture (SCWM) investigation. (NASA)

With the still relatively new frontier of microgravity research, there are many questions to pose and angles to consider. The scientists that pursue the answers using the laboratory we have available 200 miles above us are embarking on a journey of discovery that I dare say will yield some amazing findings. As Albert Einstein said, “To raise new questions, new possibilities, to regard old problems from a new angle, requires creative imagination and marks real advance in science.”

Fred Kohl is the International Space Station Physical Sciences Research project manager at Glenn. Since the mid-1980s, he’s been involved in the advocacy, definition, development and conduct of more than 250 experiments in ground-based facilities and aboard the space shuttles, Mir space station and the International Space Station in the disciplines of fluid physics, complex fluids, combustion science, fundamental physics, materials science and acceleration environment characterization. Before joining the microgravity program, he conducted research in high-temperature materials chemistry and high-temperature materials corrosion related to aircraft engine applications. He holds a B.S. in chemistry from Case Institute of Technology and a Ph.D. in chemistry from Case Western Reserve University.

Model Organisms: Shining Examples for Simple, Effective Biology Research

In today’s A Lab Aloft blog entry Camille Alleyne, Ed.D., assistant program scientist for the International Space Station Program Science Office, shares with readers the role of model organisms in microgravity research.

Have you ever thought about why biologists use the term “model organism?” This does not imply that these particular species set an example for the others in their genus. Rather, they have characteristics that allow them easily to be maintained, reproduced and studied in a laboratory. Conducting basic research on model organisms also helps researchers better understand the cellular and molecular workings of the human body, in addition to how diseases propagate. This is because the origins of all living species evolved from the same life process that is shared by all living things.

Model organisms can be plants, microbes (e.g., yeast) or animals (e.g., flies, fish, worms and rodents), all of which are widely studied and have a genetic makeup that is relatively well-documented and well-understood by scientists. Researchers favor these organisms because they grow relatively quickly and have short generation times, meaning that they swiftly produce offspring. They also are usually inexpensive to work with and are quite accessible, making them ideal for experimentation.

Aboard the International Space Station, researchers conducting studies on animal and plant biology disciplines also prefer to use model organisms. In several investigations, scientists use these test subjects to advance their knowledge of the fundamental biological processes, as they are already well-known in the specific species based on ground experimentation. 

Researchers use model organisms to study how microgravity affects cells. Examining the impacts of the space environment on an organism’s development; growth; and physiological, psychological and aging processes can lead to a better understanding of certain diseases and issues associated with human health.

 

Space radiation hitting cell DNA.(NASA)
Space radiation hitting cell DNA.(NASA)

Cells behave differently in space than on Earth because the fluids in which the cells exist move differently in the microgravity environment. The fundamental nature of the cell changes, including its shape and structure, how signals pass back and forth between cells, how they differentiate or split, how they grow or metabolize and alterations to the tissue in which cells live. Developmental biologists can learn much from these adaptations.

The Biological Research in Canisters (BRIC) experiment series of space station investigations, for instance, focuses on the area of plant biology. The study uses the thale cress (Arabidopsis thaliana) as its model organism. Scientists look at the fundamental molecular biological responses and gene expression of these plants to the microgravity environment. This small, flowering plant already has a well-sequenced genome—meaning researchers already have a map for the heredity of organism’s genetic traits. These traits are what control the characteristics of an organism, such as how it looks, behaves and develops over time.

Thale cress (Arabidopsis thaliana) seedlings. (NASA)
Thale cress (Arabidopsis thaliana) seedlings. (NASA)

Thale cress is approximately three- to seven-tenths of an inch tall and can produce offspring in large quantities in about six weeks. It also has the advantage of a small genome size—so it’s not complicated to study—and an abundance of available genetic mutants—which allows for varied areas of research focus. Specifically in the BRIC-16 investigation, Anna-Lisa Paul, Ph.D., and Robert Ferl, Ph.D., at the University of Florida in Gainesville examined the changes in the genome sequencing and DNA of these plants. Results assisted space researchers in understanding how to maintain food quality and quantity for long-duration spaceflights, in addition to how to provide and maintain life-support systems. There also are Earth applications, including understanding basic plant processes that may increase our ability to control more effectively plants for agriculture purposes.

In the area of animal biology, there are numerous investigations that use a variety of model species as subjects. In the Micro-5 investigation, principal investigator Cheryl Nickerson, Ph.D., of Arizona State University—along with co-principal investigators Charlie Mark Ott, Ph.D., of NASA’s Johnson Space Center in Houston; Catherine Conley, Ph.D., at NASA’s Ames Research Center at Moffett Field, Calif.; and Dr. John Alverdy, University of Chicago—use an organism referred to as Caenorhabditis elegans. This human surrogate model helps us better understand the risks of flight inflections to astronauts during long-duration spaceflight.

C. elegans nemotodes, or round worms, undergo examination by project scientists. The worms are descendants of those that were part of an experiment that flew on space shuttle Columbia's final mission, STS-107. (NASA/Ames/Volker Kern)
C. elegans nemotodes, or round worms, undergo examination by project scientists. The worms are descendants of those that were part of an experiment that flew on space shuttle Columbia’s final mission, STS-107. (NASA/Ames/Volker Kern)

C. elegans are free-living, transparent nematodes, or roundworms, that live in temperate soil environments. They are inexpensive and easy to grow in large quantities—producing offspring with a generation time of about three days. Members of this species have the same organ systems as other animals, making it a great model organism choice. In this study, C. elegans will be infected with the salmonella (Salmonella typhimurium) microbe, which causes food poisoning in humans and is known to become more virulent in microgravity—meaning it increases its disease causing potential. Studying this host-pathogen combination provided researchers with insight into how this bacterium will respond in space explorers, if infected. The knowledge lays a solid foundation for the development of vaccines and other novel treatments for infectious diseases.

Another model is Candida albicans, which is an opportunistic fungus or yeast that exists in a dormant state in about three of every four people. It has greater potential to become active in individuals with compromised immune systems, hence the term “opportunistic.” When active, this pathogen causes thrush or yeast infections. Easily mutated, this organism’s genes are readily disrupted for study. Principal investigator Sheila Nielsen-Preiss, Ph.D., of the Montana State University in Bozeman, used this model for the Micro-6 investigation during Expedition 34/35. As in other model organisms, the well-understood genetic makeup of this fungus made it easier for scientists to identify changes that occurred in microgravity. This led to a better understanding or the fungus’ fundamental physiological responses and their ability to cause infectious diseases.

On a larger scale, one of the human body’s major adaptations to spaceflight is the loss of bone mineral density. Understanding the mechanisms by which bones break down and build back up in this extreme environment is critical to human space exploration. In order to understand these phenomena more fully, researchers study Medaka fish (Oryzias latipaes) in the Aquatic Habitat (AQH) aboard the space station.

The above image shows an Aquatic Habitat (AQH) specimen chamber housing Medaka fish for study. (JAXA)
The above image shows an Aquatic Habitat (AQH) specimen chamber housing Medaka fish for study. (JAXA)

These model animals found in Asia are used extensively in biological research. They are vertebrates—meaning they have backbones—making them a good choice for studying bone activity. Medaka also have a well-mapped genome, a short gestation period and reproduce extremely easily. They are resilient and can survive in water of various levels of salinity.

In the Medaka Osteoclast investigation, principal investigator Akira Kudo, Ph.D., of the Tokyo Institute of Technology, along with co-principal investigators Yoshiro Takano, DDS, Ph.D., of the Tokyo Medical and Dental University; Keiji Inohaya, Ph.D., of the Tokyo Institute of Technology; and Prof. Masahiro Chatani of the Tokyo Institute of Technology, studied the process by which bone breaks down via the activity of bone cells known as osteoclasts. The transparency of the fish gave researchers a view into the mechanism of this process that would not be possible with other fish species. The goal of this research is to advance our knowledge on human bone health, leading to development of treatments and countermeasures for both astronauts living in space and patients suffering from osteoporosis on Earth.

In the coming year, the space station will add two new facilities as research resources to house a couple of distinct model organisms. The first is a fruit fly (Drosophila melanogaster) habitat. This type of insect is one of the 1,200 species in the genus of flies that is particularly favorable in genetic research. You may be surprised to know that the genes of D melanogaster are very similar to those of humans. More than half of our genes that map to diseases have been found to match those of fruit flies.

Since fruit flies reproduce quickly and their genome is completely sequenced, they serve as good models to study diseases in a much shorter time than it would take via human research. In the context of human spaceflight, scientists will continue to use fruit flies as a model to test gene expression in the space environment, adding to work done on the space shuttle.

Sharmila Bhattacharya, Ph.D., is the principal investigator for the Fungal Pathogenesis, Tumorigenesis and Effects of Host Immunity in Space (FIT) fruit fly investigation. In this image, Bhattacharya is inspecting the fly experiment containers before flight. (NASA)
Sharmila Bhattacharya, Ph.D., is the principal investigator for the Fungal Pathogenesis, Tumorigenesis and Effects of Host Immunity in Space (FIT) fruit fly investigation. In this image, Bhattacharya is inspecting the fly experiment containers before flight. (NASA)

The second habitat coming to the space station will house rodents. Mice (Mus musculus) are the most widely known of the model species in scientific research, because their genetic code and physiological traits are very similar to humans. They are vertebrate mammals with a 10-week generation time. Their genome is very well-sequenced and understood, and they are easy to mutate and analyze. 

Mice, more than any of the other animal model organism mentioned here, allow researchers to study beyond just the cellular cycle. They have the opportunity to advance their fundamental understanding of other human systems such as the immune, cardiovascular and nervous systems, to name a few. Mice afflicted with various diseases, including osteoporosis, cancer, diabetes and glaucoma, can lead researchers to findings that advance treatment options.

These developments and findings from past, present and future investigations aboard the space station continue to enable biologists in their studies. As researchers better understand the adaptation of model organisms in a microgravity environment, they can facilitate future ways doctors will manage human health, both in space and on Earth.

Camille Alleyne, Ed.D., is an assistant program scientist for the International Space Station Program Science Office at NASA’s Johnson Space Center in Houston.

Camille Alleyne, Ed.D., is an assistant program scientist for the International Space Station Program Science Office at NASA’s Johnson Space Center in Houston. She is responsible for leading the areas of communications and education. Prior to this, she served as the deputy manager for the Orion Crew and Service Module Test and Verification program.  She holds a Bachelor of Science degree in Mechanical Engineering from Howard University, a Master of Science degree in Mechanical Engineering (Composite Materials) from Florida A&M University, a Master of Science degree in Aerospace Engineering (Hypersonics) from University of Maryland, and a doctorate in Educational Leadership from the University of Houston.

Sowing the Seeds for Space-Based Agriculture – Part 2

In today’s A Lab Aloft, Charlie Quincy, research advisor to the International Space Station Ground Processing and Research director at NASA’s Kennedy Space Center in Florida, continues to share the growing potential of plants in space and the new plant habitat that will help guide researchers.

As astronauts continue to move away from Earth, our ties back to our planet are going to be strained. We won’t have the capability to jump into a return capsule and be back to Earth in 90 minutes.

To move further away from Earth, we have to continue to develop more autonomous systems in our spacecraft that supply our fundamental needs for oxygen production and carbon dioxide (CO2) removal, clean water and food. The genetic coding in plants to perform these functions has been refined and improved for the past 3-4 billion years as plants have continually evolved on Earth. So the code is pretty good. As long as we can provide biological organisms like plants or algae with the nutrients and support systems they need, they will pretty much know what to do. What they will do is clean water, change CO2 into oxygen and generate food. From a life support system, that’s kind of what you want to happen.

There are some interesting things about plants that we’ll have to deal with in space. For instance, we don’t have bumblebees in orbit, so who does the pollination? Who goes from flower to flower? We’ve actually had astronauts using cotton swabs to move pollen from one flower to another, in particular when we were growing strawberries a few years back. As we get more and more into it, we need to figure out how to do this without using the crew, since it would not be efficient to have them pollinating a field with cotton swabs.

Plant Blog B_1
View of willow trees in an Advanced Biological Research System (ABRS) incubator for the Advanced Plant Experiments on Orbit – Cambium (APEX-Cambium) experiment aboard the International Space Station during Expedition 21. (NASA)

We have quite a number of things going on and coming to fruition on the International Space Station. We currently have a small habitat called the Advanced Biological Research System (ABRS) in orbit performing fundamental studies of plant growth in the microgravity environment. It has two independent chambers that are tightly controlled and have LED lights. We can manage moisture delivery, CO2 and trace gases inside those chambers and do some real hard science investigations. The Russian segment has a habitat, too, called the Lada greenhouse.

The Advanced Plant Habitat (APH) is a similar chamber under development, but that one will be larger. The APH will enable us to use larger plants and different species, all of which will be tightly controlled during growth investigations.

Another really exciting new system launching to the space station probably around the middle of next year is the Vegetable Production System (Veggie). It will begin bridging the gap between a pure science facility and a food production system. We are in the ground testing phase of the flight unit to assure it is safe for operation aboard the station with the help of the facility’s builder, Orbital Technologies Corporation of Madison, Wis. Orbitec. They also will manufacture the APH.

The beauty of the Veggie unit is that it’s really just a light canopy with a fan and a watering mat for growing plants, using the cabin atmosphere aboard the space station. The crew will have an opportunity to farm about two and a half square feet, which is a pretty good sized growing area. This system also has great potential as a platform for educational programs at the high school level, where students could grow the same plants in similar systems in their classrooms.

Plant Blog B_2
The Veggie greenhouse will fit into an EXPRESS Rack on the International Space Station for use with plant investigations in orbit. (NASA)

We’re going to start growing lettuce plants in Veggie next year as a test run, because lettuce is well suited for this initial testing. Lettuce is a good first crop selection because it is a rapid growing plant, with a high edible content, and generally has a small micro flora content.  We will be using specially designed seed pillows to contain the below ground portion of the lettuce plant containing the roots, rooting media, and moisture delivery system. The plants will sprout and grow up through those pillows. Ultimately scientists will be able to grow larger plants like dwarf tomatoes or peppers.

We are continuing to do the testing associated with making sure the food grown in the closed environment of the space station is safe to eat for the crew. We hope that within a short period we will be able to augment the astronauts’ diets with herbs and spices and maybe onions, peppers or tomatoes, something to give the crunch factor. Ultimately, we hope to move to even larger chambers to begin producing more of the staple crops, such as potatoes or beans.

All of these new plant systems should be up and running in the very near future. Veggie should be aboard station next year, and by the middle of 2015 we expect to deploy the APH, completing the suite of plant facilities in orbit.

When talking about life-support systems for spaceflight, there’s obviously a more complicated viewpoint that says the systems that connect all that together are pretty elaborate and cumbersome. There are reservoirs, hoppers and a vast array of other things that have to be in place to operate a bioregenerative system, which makes them big and, in some cases, energy intensive. On short-duration missions we would probably do better packing a picnic lunch and taking only the support systems we need. The further we are away from Earth, and the longer it takes us to get back, however, drives systems planning in the regenerative direction. What we’re doing is laying the groundwork that will enable those kinds of decisions to be made for long-duration exploration.

Plant Blog B_3
NASA astronaut Mike Fossum, Expedition 28 flight engineer, inspects a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload with its Lada-01 greenhouse in the Zvezda service module of the International Space Station. (NASA)

There’s a more near-term thing that we’re also looking at, which is the therapeutic aspects of growing plants. People have been exercising their “green thumbs” for this reason for years. They plant their little gardens, and the aromas of plants have a very positive impact on the way these people feel about things. The psychological effects of keeping plants are still somewhat unknown, and we’re hoping to get better insight into that. These effects include the nurturing aspects of watching something grow and caring for it. During spaceflight, far from Earth or on a long-duration mission, a totally sterile environment may not be what is desired. While you can’t have a pet dog or cat to make your living space a little more homey, perhaps you could have a pet plant to care for, as it provides oxygen and sustenance.

Charlie Quincy has been the Space Biology project manager at Kennedy Space Center for the past 13 years. His efforts include both flight and ground research aimed at expanding the current science knowledge base, solving issues associated with long-duration spaceflight and distributing knowledge to Earth applications. He is a registered professional engineer and has a master’s degree in Space Technologies. 

 

Sowing the Seeds for Space-Based Agriculture – Part 1

In today’s A Lab Aloft, Charlie Quincy, research advisor to the International Space Station Ground Processing and Research director at NASA’s Kennedy Space Center in Florida, shares the growing potential of plants in space and the new plant habitat that will help guide researchers. The blog continues in Part 2.

There are forces that work together on this planet that we take for granted when it comes to how plants grow and thrive. Here at NASA’s Kennedy Space Center we are in the process of identifying those things and how we can engineer facilities that replicate them in the closed system environment of a space vehicle or habitat, such as the International Space Station.

Within closed systems, there is limited or no exchange with the broader environment, we are specifically interested in closing the water, oxygen, and carbon loops for long duration space flight.  We have found that plants have well defined processes to perform the conversions necessary to close loop when supplied with light energy.

The wonderful thing about plants is that they pretty much know what they are supposed to do, as long as you give them an atmosphere they like. There are a couple of things that microgravity makes a little more tricky. There’s no convection mixing, for instance, in the atmosphere aboard the space station—which has a carbon dioxide (CO2) level of around 10 times what we see on Earth.

Crops tested in Vegetable Production System (Veggie) plant pillows (pictured here) include lettuce, Swiss chard, radishes, Chinese cabbage and peas. (NASA)

Crops tested in Vegetable Production System (Veggie) plant pillows (pictured here) include lettuce, Swiss chard, radishes, Chinese cabbage and peas. (NASA)

Plants take in CO2 and give off oxygen. This process occurs at the stomata on the bottom of the leaf; without convection mixing or wind, you get high concentrations of oxygen around the stoma and no CO2 coming in. We need to learn how much air movement in the chamber is necessary to force the oxygen away from the leafs and allow the CO2 to replace it.

Also, plants and their fruiting are very sensitive to various trace gases. Any time you have a closed system with little new makeup air being added, like aboard the space station, you have a buildup of trace gases. The gases, such as ethylene, that have a regulatory effect on plant growth need to be removed so plants can progress through their normal maturing process.

Without the force of gravity acting on the plant, we also have to make provisions to ensure the stems grow toward the light and the roots grow toward the water. The secondary capabilities of plants to orient themselves are still being worked out in basic science investigations.

Crew image of the Advanced Plant Experiments on Orbit -- Transgenic Arabidopsis Gene Expression System (APEX-TAGES) study during Expedition 23. (NASA)

Crew image of the Advanced Plant Experiments on Orbit — Transgenic Arabidopsis Gene Expression System (APEX-TAGES) study during Expedition 23. (NASA)

Thinking about how this work relates to what we grow on Earth, Ray Wheeler, another NASA scientist, and I were in Chicago at a commercial activity called “The Plant” to see how the people there incorporate the concepts of bioregenerative farming into their operation. This is a group of people who took an old building, formerly a meat packing house, and are trying to create a closed ecological system. They use this environment to grow plants, produce products for their store, restaurant and production facilities, and they use the waste products to generate energy for the growth facility.

NASA is interested in these facilities because they are a large venture compared to our space station operations, facing similar but different challenges. We are basically trying to do the same thing on a small scale; somewhere in the middle is what might be on a space habitat. We are setting up systems in balance and to make this balance we need to incorporate buffers and reservoirs and manage energy needs.

We are looking for opportunities where people are having success in creating these balanced systems. Working with organizations like The Plant, we learn together and push information back and forth to achieve our mutual and specific goals. Urban farming is becoming more and more common around the world and our closed system space flight goals to manage energy use and producing fresh food have much in common. Working together with this broader community will bring more solutions into play and help to uncover the best options.

Farming is no longer isolated to rural areas and the agriculture industry is growing to include urban farms. If you look at a city like New York, you’ll see little greenhouses on the roofs of almost every building. Many of those greenhouses are associated with the restaurants located on the first floor. If you have a Jamaican restaurant, for instance, they’ll have herbs and spices they’ve brought from Jamaica that they grow on their roofs. Farming for immediate use is exactly what we’re doing and we can learn from each other.

This New York-based rooftop greenhouse is an example of a closed ecological system here on Earth. (Credit: Ari Burling)

This New York-based rooftop greenhouse is an example of a closed ecological system here on Earth. (Credit: Ari Burling)

Within our ground research activities at Kennedy we have tested a broad range of crops and support systems in our growth chambers over the years. We have published hundreds of papers on our results, many of which have broad application for the agriculture industry. We also have seen and published results on the impacts of trace gases on food production, as well as different colored lighting and photo periods on plant performance. This type of information can have a tremendous impact on our global agriculture industry.

It’s really interesting how everything ties together. By pushing the boundaries and adding to our understanding of plant life we can continue to learn from each other and share benefits. We can help plants on the ground and in orbit do what they do best: grow!

Charlie Quincy has been the Space Biology project manager at Kennedy Space Center for the past 13 years. His efforts include both flight and ground research aimed at expanding the current science knowledge base, solving issues associated with long-duration spaceflight and distributing knowledge to Earth applications. He is a registered professional engineer and has a master’s degree in Space Technologies.  

A Marriage of Minds Meets Earth and Space Clean Water Needs

In today’s A Lab Aloft, mWater co-founder John Feighery recalls how his background as an environmental engineer in the International Space Station Program at NASA’s Johnson Space Center in Houston led to a novel approach to global clean water monitoring.

My wife Annie and I share a passion for humanitarian concerns, though our individual approaches may appear at first to be quite different. My career began in environmental engineering with aerospace projects for NASA, while she worked as a behavioral health scientist in East Africa. Through our mutual work, we began to see crossover potential where Earth needs could find answers from space applications. Specifically in regard to the precious resource of clean water for people living in low-resource regions or remote environments, NASA technologies developed for the extreme environment of space could help those impacted by contaminated water sources.

Annie and John Feighery, the husband and wife team behind the creation of mWater, and app. used for clean water monitoring on a global scale. (Credit: Ellen Fenter)
Annie and John Feighery, the husband and wife team behind the creation of the mWater mobile application used for clean water monitoring on a global scale. (Credit: Ellen Fenter)

We came up with the idea to provide an open source water and sanitation technology that would be mobile, accessible and inexpensive. Combining our desire to help improve the lives of others, we brought this dream into reality by founding mWater, an organization that uses low-cost kits for water testing in tandem with the mWater mobile phone app that can read the water tests.

The app communicates water source locations and their safety status on a map that water users can use to find safe water around them. Water source managers also can use the app to identify the biggest health risks in their community. Our co-founder, software engineer Clayton Grassick, designed the app in 2011, after we pitched him the challenge during the Random Hacks of Kindness Hackathon in Montreal Canada. We launched a beta version in August 2012, piloting the water test and app technology in Mwanza, Tanzania with funding from UN Habitat. With an investment grant from USAID Development Innovation Ventures, we began in June to train Mwanza’s water managers and environmental health workers to test water sources and monitor them with the mobile phone app.

Clayton Grassick, co-founder and software designer for the mWater app. (Credit: mWater)
Clayton Grassick, co-founder and software designer for the mWater app. (Credit: mWater)

The origin of this global resource has its roots in the work I did for the people leaving our planet—astronauts bound for the International Space Station. My efforts as the lead engineer for air and water equipment on the space station focused on requirements for efficient and highly portable testing capabilities that did not require incubators or other laboratory equipment to check for contamination in drinking water sources. The technology that mWater uses for testing for the presence of E. coli in 100 ml samples was inspired by the Microbial Water Analysis Kit (MWAK) that I helped develop to provide NASA with a simple water quality test. MWAK is part of the CHeCS EHS suite of hardware for environmental monitoring aboard the space station.

View of the Microbial Water Analysis Kit (MWAK) during flight tests aboard the International Space Station. (NASA)
View of the Microbial Water Analysis Kit (MWAK) during flight tests aboard the International Space Station. (NASA)

The solutions I helped deliver to the station crew also applied to the needs I saw in my volunteer efforts on Earth. During a stint with the NASA Johnson Space Center chapter of Engineers Without Borders in El Salvador I was struck by the lack of clean water and the vision came together for me. I realized that I could help not only the crews bound for orbit, but also the billions of people here on Earth with the basic human need for a clean water supply.

The key innovation that came from my time at NASA was proving through the MWAK project that these types of tests can work at near ambient temperatures. This was essential for testing in the field, especially in developing countries, as incubators are expensive and require electricity. The mWater tests, however, can be done easily by anyone at room temperature.

Part of the problem with water testing up to this point was the expense of microbiology labs and the need to make the data accessible to the public quickly and efficiently. In essence, mWater works by combining an online global map of water sources reflecting inputs from an open, scalable and secure cloud-based database; inexpensive (only $5 per kit) and accurate water testing kits; and the cross-platform mobile phone app that reports test results and records water sources.

The first assembled mWater kit. (Credit: mWater)
The first assembled mWater kit. (Credit: mWater)

The app itself works with the phone’s camera and GPS to record the location of the sample and the results from the test kits, uploading the information to the free, mapped database. The water source gets its own unique numeric identifier, which governments, health workers, and citizens can use to check the health of their local supplies. The app, available for free on the Google Play Store, can function offline and is also compatible with iPhone, Windows, Android and Blackberry phones through their Web browsers.

We verified the app in real-time via a UN Habitat study that took place in Mwanza, Tanzania. The success of this validation testing allowed us to move forward to implement our tool for users around the world. What’s even better is that as people continue to use this resource, they share the water results in an open source forum online. We are building an open source/open access global water quality database that anyone can put into operation to better understand water safety across geography and time.

The ease of the app is another carryover from my days at NASA, mimicking the lessons learned from writing training plans for the crew of the space station to learn to use such a tool. We focused on simplicity and ease of use to reduce human error in the user interface. More than 1,000 Android users on the Google Play Store have downloaded the app during the beta release phase. Now, less than two years later, mWater has grown to fully implementing water quality monitoring and mobile surveys with the investment grant from USAID.

The mWater app running on an Android phone. (Credit: mWater)
The mWater app running on an Android phone. (Credit: mWater)

Scientists and concerned citizen groups from around the world are downloading the app because the technology reduces the cost of conducting large water studies. We have also collaborated with Riverkeeper, a non-profit organization in New York City, to monitor water here at home in the Hudson River Valley.

We have used this simple and affordable tool to test water in Tanzania, Rwanda, Kenya, and we are expanding to Ethiopia later this year. These countries represent areas where people have access to the fewest safe water sources in the world. Diarrheal disease is the second leading cause of child mortality worldwide, behind lung infections. Drinking unsafe water also leads to malnutrition and stunting and lost wages for those who are ill and those who care for them.

In our research, most families choose between three water sources on average for their water each day. mWater’s app can help them make the safest choice available and inform them when they need to expend their precious resources on fuel to boil unsafe water. We can generate reports of water source status for communities that need assistance lobbying for government funding. Most importantly, in our view, we create a sustainable capacity for affordably monitoring water that can exist after we leave each community.

John Feighery helping to check water in Tanzania. (Credit: Annie Feighery)
John Feighery helping to check water in Tanzania. (Credit: Annie Feighery)

John Feighery is a social entrepreneur working to bring low-cost water monitoring to under-resourced communities, using mobile phone and mapping technology to share the results and respond rapidly to contamination. He will graduate this year with a doctorate in Earth and environmental engineering from Columbia University, where he measured and modeled microbial contamination of groundwater and drinking water in Bangladesh. Before returning to Columbia for his Ph.D., Feighery worked for NASA as manager of the Environmental Health System for the International Space Station and also helped develop advanced life support technology.

 

Women in Space Part One, Female Firsts in Flight for Space Exploration and Research

In today’s A Lab Aloft, guest blogger Liz Warren, Ph.D., recalls the inspirational contributions and strides made by women in space exploration and International Space Station research.

This month we celebrate the anniversaries of three “firsts” for female space explorers. On June 16, 1963, Valentina Tereshkova of the Soviet Union became the first woman in space. Then on June 18, 1983, Sally Ride became America’s first woman in space, followed by Liu Yang as China’s first woman in space on June 16, 2012. Though their flight anniversaries are not in June, I would be remiss if I did not mention the first European woman in space: Helen Sharman in 1991; the first Canadian woman: Roberta Bondar in 1992; and the first Japanese woman: Chiaki Mukai in 1994.

Women in space_1

At the Gagarin Cosmonaut Training Center in Star City, Russia, Dec. 2, 2010, NASA astronaut Cady Coleman (right), Expedition 26 flight engineer, meets with Valentina Tereshkova, the first woman to fly in space, on the eve of Coleman’s departure for the Baikonur Cosmodrome in Kazakhstan, where she and her crewmates, Russian cosmonaut Dmitry Kondratyev and Paolo Nespoli of the European Space Agency launched Dec. 16, Kazakhstan time, on the Soyuz TMA-20 spacecraft to the International Space Station. Tereshkova, 73, became the first woman to fly in space on June 16, 1963, aboard the USSR’s Vostok 6 spacecraft. (NASA/Mike Fossum)

Each of these milestones built upon each other by inspiring the next wave of female explorers, continuing through today with the women of the International Space Station and beyond. With this in mind, I’d like to take a moment to celebrate women in space and highlight those with a connection to space station research. It is amazing to me to see just how connected these seemingly separate events can be. The steps of the intrepid explorers who engage in space exploration set the course for future pioneers, blazing the trail and providing the inspiration for those who follow.

To date, 57 women including cosmonauts, astronauts, payload specialists and foreign nationals have flown in space. Our current woman in orbit is NASA astronaut Karen Nyberg, working aboard the space station as a flight engineer for Expeditions 36 and 37. While Nyberg lives on the orbiting laboratory for the next six months, she will perform experiments in disciplines that range from technology development, physical sciences, human research, biology and biotechnology to Earth observations. She also will engage students through educational activities in addition to routine vehicle tasks and preparing her crewmates for extravehicular activities, or spacewalks.

Women in space_2

NASA astronaut Karen Nyberg performs a test for visual acuity, visual field and contrast sensitivity. This is the first use of the fundoscope hardware and new vision testing software used to gather information on intraocular pressure and eye anatomy. (NASA)

Many of the women who have flown before Nyberg include scientists who continued their microgravity work, even after they hung up their flight suits. In fact, some of them are investigators for research and technology experiments recently performed on the space station. Whether inspired by their own time in orbit or by the space environment, these women are microgravity research pioneers ultimately looking to improve the lives of those here on Earth.

Chiaki Mukai, M.D., Ph.D. of the Japanese Aerospace Exploration Agency, for instance, served aboard space shuttle missions STS-65 and STS-95. She now is an investigator for the space station investigations Biological Rhythms and Biological Rhythms 48, which look at human cardiovascular health. She also is the primary investigator for Hair, a study that looks at human gene expression and metabolism based on the human hair follicle during exposure to the space station environment. MycoMyco 2Myco 3, other investigations run by Mukai, look at the risk of microorganisms via inhalation and adhesion to the skin to see which fungi act as allergens aboard the space station. Finally, Synergy is an upcoming study Mukai is leading that will look at the re-adaptation of walking after spaceflight.

Women in Space_3

STS-95 payload specialist Chiaki Mukai is photographed working at the Vestibular Function Experiment Unit (VFEU) located in the Spacehab module. (NASA)

Peggy Whitson, Ph.D. served aboard the space shuttle and space station for STS-111Expedition 5STS-113, and Expedition 16. She also is the principal investigator for the Renal Stoneinvestigation, which examined a countermeasure for kidney stones. Results from this science have direct application possibilities by helping scientists understand kidney stone formation on Earth. Whitson, who blogged with A Lab Aloft on the importance of the human element to microgravity studies, also served as the chief of the NASA Astronaut Office at the agency’s Johnson Space Center in Houston from 2009 to 2012.

Women in Space_4

Expedition 16 Commander Peggy Whitson prepares the Capillary Flow Experiment (CFE) Vane Gap-1 for video documentation in the International Space Station’s U.S. Laboratory. CFE observes the flow of fluid, in particular capillary phenomena, in microgravity. (NASA)

Sally Ride, Ph.D. (STS-7STS-41G) initiated the education payload Sally Ride EarthKAM, which was renamed in her honor after her passing last year. This camera system allows thousands of students to photograph Earth from orbit for study. They use the Internet to control the digital camera mounted aboard the space station to select, capture and review Earth’s coastlines, mountain ranges and other geographic areas of interest.

Women in Space_5

Astronaut Sally Ride, mission specialist on STS-7, monitors control panels from the pilot’s seat on space shuttle Challenger’s flight deck. Floating in front of her is a flight procedures notebook. (NASA)

Millie Hughes-Fulford, Ph.D. (STS-40) has been an investigator on several spaceflight studies, including Leukin-2 and the T-Cell Activation in Aging study, which is planned to fly aboard the space station during Expeditions 37 and 38. This research looks at how the human immune system responds to microgravity, taking advantage of the fact that astronauts experience suppression of their immune response during spaceflight to pinpoint the trigger for reactivation. This could lead to ways to “turn on” the body’s natural defenses for those suffering from immunosuppression on Earth.

Hughes-Fulford has been a mentor to me since I was in high school. It was Hughes-Fulford who encouraged me to pursue a career in life sciences, and she also invited me to attend her launch aboard space shuttle Columbia on STS-40, the first shuttle mission dedicated to space life sciences. In fact, STS-40 also was the first spaceflight mission with three women aboard: Hughes-Fulford; Tammy Jernigan, Ph.D.; and Rhea Seddon, M.D.

I followed Hughes-Fulford’s advice, and, years later, I found myself watching STS-84 roar into orbit carrying the life sciences investigation that I had worked on as a student at the University of California, Davis. In the pilot’s seat of shuttle Atlantis that morning was Eileen Collins, the first woman to pilot and command the space shuttle. Our investigation, Effects of Gravity on Insect Circadian Rhythmicity, was transferred to the Russian space station Mir, where the sleep/wake cycle of insects was studied to understand the influence of spaceflight on the internal body clock.

Women in Space_6

Payload Specialist Millie Hughes-Fulford checks the Research Animal Holding Facility (RAHF) in the Spacelab Life Sciences (SLS-1) module aboard space shuttle Columbia. (NASA)

Women at NASA always have and continue to play key roles in space exploration. Today we have female flight controllers, flight directors, spacecraft commanders, engineers, doctors and scientists. In leadership positions, Lori Garver is at the helm as NASA’s deputy administrator, veteran astronaut Ellen Ochoa is director of Johnson; and Lesa Roe is director of NASA’s Langley Research Center in Hampton, Va.

In space exploration and in science, we stand on the shoulders of those who came before us. These women pushed the boundaries and continue to expand the limits of our knowledge. What an incredible heritage for the girls of today who will become the scientists, engineers, leaders and explorers of tomorrow.

Liz Warren

Liz Warren, Ph.D., communications coordinator for the International Space Station Program Science Office. (NASA)

Liz Warren, Ph.D., is a physiologist with Barrios Technology, a NASA contractor. Her role in the International Space Station Program Science Office is to communicate research results and benefits both internally to NASA and externally to the public. Warren previously served as the deputy project scientist for Spaceflight Analogs and later for the ISS Medical Project as a science operations lead at the Mission Control Center at NASA’s Johnson Space Center in Houston. Born and raised near San Francisco, she has a Bachelor of Science degree in molecular, cellular and integrative physiology and a doctorate in physiology from the University of California at Davis. She completed post-doctoral fellowships in molecular and cell biology and then in neuroscience. Warren is an expert on the effects of spaceflight on the human body and has authored publications ranging from artificial gravity protocols to neuroscience to energy balance and metabolism.

Smart Use of Science Space in Space

In today’s A Lab Aloft, guest blogger Liz Warren, Ph.D., explains the flexibility in science capability on the International Space Station, thanks to the modular design of the research racks aboard the orbiting laboratory.

People are often shocked when they learn that the International Space Station is as large as a football field. They are also surprised to know that the interior volume is 32,333 cubic feet; that’s about the size of a five-bedroom house. Even though that is a very large volume, it pays to use ‘space’ smartly in space.

In order to be most efficient with the interior volume of the space station, the orbiting laboratory contains modular science facilities, usable by multiple investigators and experiment types. In fact, some of the facilities aboard the station are engineered for easy modification to meet the needs of different users. These ‘shared’ facilities enable efficient research utilization time aboard the station. Making facilities modular also allows for upgrades so that the space station stays on the cutting edge of science.

NASA astronaut Greg Chamitoff, Expedition 17 flight engineer, works with an experiment within the Microgravity Sciences Glovebox. (NASA)

Inside the Destiny, Kibo and Columbus laboratories, the walls, ceilings and floors are lined with science “rack” facilities. These racks, each similar in size to a big refrigerator (about 79.3 in. high, 41.3 in. wide, and 33.8 in. deep), are curved in the rear so that they fit almost flush against the inside surface of the cylindrical space station laboratory modules. The racks themselves are modular for easy relocation within the station as needed.

Some racks are built for housing several small-sized investigations. These EXPRESS racks provide power, air and water cooling, data and exhaust, command and control for up to a dozen different investigations. EXPRESS stands for Expedite the Processing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the space station’s research capabilities.

NASA astronaut Greg Chamitoff, Expedition 17 flight engineer, works in the Kibo laboratory to move an EXPRESS rack during a relocation task. (NASA)

Other racks are specialized for specific disciplines such as combustion, fluids, materials, human research and Earth observation. There is also a glovebox that is suitable for handling and containing hazardous materials and several freezers to preserve science samples.

As a National Laboratory, the station science facilities built by NASA are available on a time-shared basis to other U.S. government agencies and private entities, such as commercial companies and universities, to pursue their own mission-driven research and applications. Shared use of international capabilities can also be arranged between NASA and the International Space Station partner agencies. Scientists that find they need a facility for their experiment that does not currently exist in orbit can work with their sponsoring organization to develop new hardware, which NASA will launch without cost to the scientist.

To highlight the capabilities of some of the space station’s science racks, Space Center Houston, the visitor center at NASA’s Johnson Space Center, enlisted help from the International Space Station Program and Space City Films of Houston to produce a unique video display for an updated space station exhibit. The exhibit is designed to educate and excite visitors about the accomplishments and importance the station plays in our continued human presence in space and the research conducted there.

The International Space Station has a variety of multidisciplinary laboratory facilities and equipment available for scientists to use. The video here highlights the capabilities of select facilities. (NASA/Space Center Houston)

The video display is actually a large wall, onto which the video projects from the back for a vibrant, life-sized, interactive experience!

I assisted in the production of this video for visitors to Space Center Houston to enjoy, providing images, video and scientific content. Viewing the finished product for the first time on a recent visit was fulfilling, but I know there is more work to be done to communicate the value of space station research.

The International Space Station is a premier, world-class laboratory in low-Earth orbit that promises to yield insights, science and technologies, the likes of which we have only begun to comprehend. With the capabilities of our research racks and facilities, investigators can use microgravity to unlock fundamentals of combustion, fluids, physiology and more to improve life on Earth in addition to supporting future space exploration.


Liz Warren, Ph.D., communications coordinator for the International Space Station Program Science Office. (NASA)

Waste Not, Want Not: Translating What We Learn About Living On Space Station For Life On Earth

Intoday’s entry, guest blogger Jeff Smith, Ph.D., shares his thoughts on thesustainable aspects of the International Space Station with the readers of ALab Aloft, pointing out how these carefully planned efforts in space can leadto greener living on Earth.

The International Space Station is an amazing place. It’sa research lab, an observatory, a complex machine and a home. But, it’s notjust any home or workplace; the station is the most remote and mostenvironmentally conscious home or office ever created. Every bit of materials,supplies and consumables must be brought from Earth at a cost of thousands ofdollars per pound. All the on-board power comes from renewable solar energy.Anything that can be re-used, re-purposed or recycled gets to stay; everythingelse gets tabulated, quantified, packed and either returned to Earth, or packedout aboard Progress or another space vehicle designated to burn up over thePacific Ocean. 

In space, it costs a lot to bring in supplies and packout the waste. It is also extremely important to always make sure there areenough supplies and enough power to keep everything running smoothly 24 hours aday, 7 days a week for a crew (or family) of six. There is no grocery store,pharmacy or hardware shop in space. If it’s not aboard, you can’t just go outand pick it up at the corner store. You can’t even open the windows to get moreair. If you run out, that’s it. 

As a result of these limitations, the space station hasbecome an incredible example of sustainability and sustainable practicesanywhere on Earth, or beyond. The technologies and methods being developed andused by the crew can directly translate to improved sustainability for homesand offices here on Earth. 


NASA astronaut Catherine (Cady) Coleman, Expedition 26flight engineer, is pictured with a stowage container and its contents in theHarmony node of the International Space Station.
(NASA Image ISS026E011334)

Supplies are stored in a number of locations andcarefully tracked so they can be brought out when required. Since the crew is living,working, eating, sleeping, exercising and breathing—just as you and I would doon Earth—those supplies get used pretty quickly. All that packaging, food andother consumables become waste. The waste is also carefully measured andstored.

Some materials and samples are returned to Earth; but themajority is stowed aboard Progress or other space vehicles and allowed to burnup in the atmosphere over the Pacific Ocean. At first this might not seem likea “sustainable” practice, but the space station must track everything thatcomes in or goes out. With the high cost of boosting supplies into space, stationcrews and ground-support personnel take many steps to reduce, re-use andrecycle everything they can.


The unpiloted ISS Progress 41 supply vehicle departs fromthe International Space Station April 22, 2011. Filled with trash and discardeditems, Progress 41 remained in orbit a safe distance from the station forengineering tests before being commanded by flight controllers to descend to adestructive re-entry into Earth’s atmosphere over the Pacific Ocean.
(NASA Image ISS027E015444)

Air and water are currently recycled aboard the spacestation, but NASA has plans to improve these systems and do even more torecycle waste. These new and advanced space-based life support systemsinclude air revitalization, water recovery, and waste management, as well ascontrol systems for many other important factors, such as temperature, humidityand cabin pressure.

To reduce the high cost of lifting resources into orbit,space life support systems must be extremely small and lightweight. Since thereis little power to spare in space, they must also be very energy efficient.Space life support systems also need to be extraordinarily reliable andlow-maintenance, as malfunctions can lead to mission failure and repairs inspace are time consuming and demanding on the crew. Additionally, these systemscan increase self-sufficiency by regenerating vital resources from wastematerials.

These requirements for sustainable systems inspace—small, lightweight, energy-efficient, low-maintenance, and low waste—arethe same as those that can make systems work even better here on Earth. Thus,the capabilities developed to enable human exploration inspace can be potentially applied on Earth to make cleaner, more sustainableliving possible here today. NASA’s technical excellence and engineeringexpertise offer critical resources for jump-starting sustainable systemstechnologies for use in private and commercial sectors. With a strongcommitment to public/private partnerships and commercial technology transfer,NASA knowledge and technologies can help make sustainable living practical andaffordable for everyone.


NASA advanced life support systems, air (left), water(middle) and solid waste (right) processing units for life support can providefuture space habitats with small, low-power, extremely efficient recyclingsystems. These space systems can have Earth-based applications to improvesustainability where we live and work. 
(Credit: NASAAmes ResearchCenter)

Today, some of the sustainable technologies developed forspace are being brought down to Earth in the Sustainability Base at NASA AmesResearch Center. This 50,000 square foot office building is one of thecleanest, greenest facilities ever constructed. 


NASA’s Sustainability Base is unlike any other governmentbuilding every created. It incorporates space technologies and know-how, bringingInternational Space Station and other NASA energy/sustainability practices downto Earth in one of the greenest, most efficient buildings ever.
(Credit: NASAAmes ResearchCenter)

Construction of the Sustainability Base will be completedsoon, showing that NASA really does translate advanced sustainable technologiesfrom space down to Earth, affecting our homes and workplaces for a cleanergreener tomorrow. Other ongoing activities, outlined in the NASA Ames Greenspace Website, include sustainable practices,clean energy technology development and green aviation research. Thesetechnologies and methods, whether used aboard station or to accomplish otherNASA missions, can make a big contribution to improve sustainability andenvironmentally friendly practices here on Earth.   


Jeff Smith, Ph.D.
(Credit: NASA)

JeffSmith, Ph.D., is Chief of the Space Biosciences Research Branch at NASA’s AmesResearch Center. The principal mission of the Branch is to advance spaceexploration by achieving new scientific discoveries and technologicaldevelopments in the biosciences. Smith has worked for NASA since 1996.
http://spacebiosciences.arc.nasa.gov/staff/jeffrey-smith

We are Writing, but is the Public Reading?

In today’s A Lab Aloftpost International Space StationProgram Science Office Research Communications Specialist Jessica Nimon asksscience writing professionals, “Why do you think the public doesn’t seem toknow what NASA is doing on the International Space Station?”

I started writing science stories for the InternationalSpace Station Program Science Office over a year ago. During fiscal year 2010,I published or helped to promote the publication of 67 stories regardingresearch accomplished on the space station. Yet, in spite of the volume ofstories going out, I continue to meet people who are oblivious to what NASA isdoing with the space station.

With this in mind, I decided to tackle the question of whythe public was unaware of what NASA was doing. The opportunity to canvas agroup of science writing professionals from around the nation at the 2011 National Association of Science WritersConference was too good to pass up. On the plane out to the conference, betweenseminars and at networking receptions I put my question to editors, writers andpublic information officers from various publications and universities.


Science writers from around the United States listen to alecture on research that measures carbon levels in an area devastated by forestfires as part of the 2011 National Association of Science Writers Conference.
(Credit: Jessica Nimon)

First, perhaps I should explain the communications effortsof the International Space Station Program Science Office. Along with thevarious NASA Center Public Affairs Offices, we work towards the goal of informativestory publications on NASA’s space station research and technology Website.We also maintain a blog, called “ALab Aloft,” and put out weeklyscience updates. To spread the word of these efforts, we use the @ISS_Research Twitter account andthe International Space StationFacebook page to share links to our publications, as well as various facts andnotices, as they come out.

These efforts may not seem far reaching, but consider theinvestment return of compounding publication. In pure numbers, at the time I’mwriting this post, we have 11,438 followers on @ISS_Research. If NASA’s Twitteraccount retweets us, we potentially reach an additional 1,507,108 followers!Every follower can choose to forward on our tweets, sharing our storiesexponentially. This goes for the station Facebook page, as well, which hasclose to 40,000 likes. Then consider the various blogs and journalism sites onthe Internet that republish these space station research and technologystories—the possibility to reach the public is vast!

So why does the message seem to be only reaching a few? Why domany people I encounter still mistakenly think that the retirement of the SpaceShuttle Program meant the end of the space station? Some even wrongly believeNASA is closing up shop altogether. Here is what the science writingprofessionals at the conference had to say on the topic:

Audience Fatigue –Saturation on the topic

NASA makes the news on a fairly regular basis. Betweensatellites, climate studies, the space station, telescopes, lunar and Marsmissions, etc., there is plenty going on and it can be hard to keep track.Those trying to maintain pace with everything NASA touches could burn out fastand may focus their attention down to a specific area of interest or stopfollowing altogether.

Media Overload –Getting lost in the mix

With as many stories as NASA generates, just think of theglut the media as a whole produces! If people are awash in just one area, likeNASA, you can imagine they are likely burning out in general. With limits tohow many hours are in a day, many readers cherry pick their news based onheadlines, which means that the vast majority of stories published get buriedby other features.

Flashier Topics –Trumped by popular subjects

In the public’s media diet, not everyone will choose thefruits and vegetables of science topics when they have such easy access to thedesserts of celebrity and entertainment? Likewise, when breaking news occurs,it can plaster the pages of publication Websites for days, even weeks.Everything else published during such times risks being overshadowed.


Space shuttle Atlantis and its four-member STS-135 crew headtoward Earth orbit and rendezvous with the International Space Station on July,8, 2011.
(NASA Image
STS135-S-143)

Information Silos –Audience interest funneled elsewhere

Specialized media sites and topic categories can make iteasier to follow up on the news that means most to a reader. The downside tothese avenues of information is the resulting tunnel vision that can develop. Itcan be a challenge for readers to take a liberal arts approach to their media inan effort to maintain a well-rounded awareness in the world they live in.

Lost Interest – Thestation took over a decade to build; society stopped caring

Paying attention to a topic over many years requires apassion that not everyone may share. One science writer commented that he hadcovered space shuttle launches from the beginning of his career through theretirement of the program. He saw the same reporter faces age along with hisown as they all continued to turn up for NASA press junkets. While the launchesthemselves were always exciting, he wondered how many of his readers continueda loyal following of the topic. As they also aged, did they tune out andrefocus towards topics directly applicable to their daily lives?


The bright sun greets the International Space Station fromthe Russian section of the orbiting laboratory.
(NASA Image S129E007592)

Conquest – A desirefor adventure in space, rather than utilization

Shuttle launches were exciting! There were rockets andflames and explorers flying into space. We still have launches to the space station,but they are now taking place off of American soil, which distances theexperience from the national public. The link between the shuttle and thestation was one that served to point eyes to the missions aboard the orbitinglaboratory, but getting readers to consider the daily operations of a sciencefacility as an adventure—even in the microgravity of space—can be a challenge.

Instant Gratification– A public used to instant results may not follow and wait

Many readers may not fully appreciate the time and varioushoops research has to go through before results publish. It is also possiblethey do not understand the dangers of the valleyof death in science studies. To follow the topic of space station research,the wait for results can be years or even decades. In this age of instantaneousinformation on the Internet, this delay can tally a cost in readership.


Russian cosmonaut Sergei Volkov, Expedition 29 flightengineer, checks the progress of a new growth experiment on the BIO-5Rasteniya-2 (Plants-2) payload with its LADA-01 greenhouse in the ZvezdaService Module of the International Space Station.
(NASA Image ISS029E007686)

Research, however, cannot be rushed, so readers will have todevelop the virtue of patience. The bright side? Since investigations have beenongoing from the time the space station began, we are indeed now seeing resultsfrom early studies and can look forward to a steady influx of publicationshighlighting the discoveries of space science. Part of the excitement is the compoundingknowledge and the use capacity going forward for the facilitiesaboard the station, and perhaps serendipitous discovery.

The real question to ask ourselves now is what do we doabout this readership dilemma? We may bring the story to the public, but wecannot make them read. I’m curious to see if the audience of this entry hastheir own answers to offer. What would you like to see regarding news of researchand technology on the space station? How do you like to receive your news andwhat can we do to better engage the public?


Jessica Nimon, communications specialist for theInternational Space Station Program Science Office at NASA’s Johnson Space Center.
(Credit: Jessica Nimon)

JessicaNimon worked in the aerospace industry as a technical writer for seven yearsbefore joining the International Space Station Program Science Office as theResearch Communications Specialist. Jessica composes Web features, blogentries, and manages the @ISS_Research Twitter feed to share space stationresearch and technology news with the public. She has a master’s degree inEnglish from the University of Dallas.