Top Space Station Research Results Countdown: Seven, Colloid Self Assembly Using Electrical Fields for Nanomaterials

In today’s A Lab Aloft entry, International Space Station Program Scientist Julie Robinson, Ph.D., continues the countdown of her top ten research results from the space station, recently presented at the International Astronautical Conference in Beijing, China. Be sure to check back for daily postings of the entire listing.

Number seven on my countdown, colloid self-assembly using magnetic fields for development of nanomaterials, is a dramatic shift in research discipline from our previous item. I picked this area of physical science study because many people don’t realize how space research can be used to advance the field of nanotechnology. This set of studies looks at colloid arrangements at a nanoscale using electrical fields. The finding was significant enough to net an award this summer at the 2013 International Space Station Research and Development Conference. Eric Furst, Ph.D., University of Delaware, received this recognition for outstanding results on Colloid Self Assembly as a top space station application.

Expedition 16 Commander Peggy Whitson works with the Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions-2 (InSPACE-2) study using the Microgravity Science Glovebox (MSG) in the U.S. Laboratory/Destiny. (NASA)
Expedition 16 Commander Peggy Whitson works with the Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions-2 (InSPACE-2) study using the Microgravity Science Glovebox (MSG) in the U.S. Laboratory/Destiny. (NASA)

Colloids are tiny particles suspended in a solution, which are critical in household products such as lotions, medications and detergents, as well as in industrial processes. But in this case, we are talking about a unique type of colloid studied in the Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions (InSPACE) collection of experiments. Specifically, these are what we call Magnetorheological (MR) fluids—fluids that change their viscosity in an electric field, and can even be induced to change their arrangement at the nanoscale.

These suspensions of paramagnetic particles, meaning they are attracted to magnetic forces, can quickly solidify when exposed to a magnetic field. They return to their original state when the influence ends. This solidification process produces useful viscoelastic properties that can be harnessed for a variety of mechanical devices, from intricate robotic motions to strong braking and clutch mechanisms.

Microgravity study aboard the space station slows down the movement of these colloidal mixtures, allowing researchers to understand how they interact, and then use this knowledge to control the tiny particles on the ground. You can’t do these experiments on Earth because the nanoparticles would settle out too quickly due to gravity.

Structure evolution in an MR fluid over time while an alternating magnetic field is applied, from one of the early InSPACE runs. The far left image shows the fluid after 1 second of exposure to a high-frequency-pulsed magnetic field. The suspended particles form a strong network. The images to the right show the fluid after 3 minutes, 15 minutes, and 1 hour of exposure. The particles have formed aggregates that offer little structural support and are in the lowest energy state. (E. Furst, University of Delaware/NASA)
Structure evolution in an MR fluid over time while an alternating magnetic field is applied, from one of the early InSPACE runs. The far left image shows the fluid after 1 second of exposure to a high-frequency-pulsed magnetic field. The suspended particles form a strong network. The images to the right show the fluid after 3 minutes, 15 minutes, and 1 hour of exposure. The particles have formed aggregates that offer little structural support and are in the lowest energy state. (E. Furst, University of Delaware/NASA)

When the InSPACE study began, it identified a pulsing phenomenon that had never been seen before. This was a serendipitous result that astronaut Peggy Whitson previously discussed in this blog entry. Work continued with (InSPACE-2 and -3) investigations to further look at how magnetic fields impact colloidal self-assembly phase transitions. By better understanding how these fluids “bundle” themselves into solid-like states in response to magnetic pulses, researchers have insight into phase separation. This may lead them to new nanomaterials from these tiny building blocks for use on Earth.

This is really an exciting and continued area of endeavor on the space station, with the most recent results on nanomaterials structures of colloids published in the prestigious Proceedings of the National Academies of Science, USA. It is so simple—you have to do these studies in space because on Earth the particles settle out too quickly. However, the results are far from simple, with the most recent studies having moved far beyond the original investigation.

Julie A. Robinson, Ph.D.
International Space Station Program Scientist

Top Space Station Research Results Countdown: Eight, Hyperspectral Imaging for Water Quality in Coastal Bays

In today’s A Lab Aloft entry International Space Station Program Scientist Julie Robinson, Ph.D., continues the countdown to her top ten research results from the space station, recently presented at the International Astronautical Conference in Beijing, China. Be sure to check back for daily postings of the entire listing.

Number eight on my list of the top ten research results from the International Space Station is hyperspectral imaging for water quality in coastal bays. This is an important research result because it shows the value of the space station as an Earth remote sensing platform. In this case, the space station hosts an instrument called the Hyperspectral Imager for the Coastal Ocean (HICO).

Data from the Hyperspectral Imager for Coastal Oceans (HICO)—pictured here as installed on the Japanese Experiment Module Exposed Facility—used in concert with field data can help researchers better understand and communicate coastal water quality. (NASA)
Data from the Hyperspectral Imager for Coastal Oceans (HICO)—pictured here as installed on the Japanese Experiment Module Exposed Facility—used in concert with field data can help researchers better understand and communicate coastal water quality. (NASA)

This imager gets data on the wavelengths of light that it measures reflecting back from the surface of the Earth. It is particularly tuned to get hundreds of bands, much more than the eight different bands you would usually get from a remote sensing instrument like Landsat. These hundreds of different bands can be teased apart for details and information that you can’t get from normal remote sensing data.

For example, using HICO you can distinguish between sediment and chlorophyll in the water column. Chlorophyll, which is a sign of algae, is an indicator that nitrogen is flowing in—say from fertilizers on the land. That is an important marker of water quality issues. In a sediment-laden bay, however, it can be really difficult to differentiate between the two—often called the “brown water” problem by ocean remote sensing experts.

The U.S. Environmental Protection Agency (EPA) findings may allow coastal ecosystem researchers to keep up with changes in water quality in near real time using HICO's data, instead of having to send scientists into the field, as pictured here. (EPA/Darryl Keith)
The U.S. Environmental Protection Agency (EPA) findings may allow coastal ecosystem researchers to keep up with changes in water quality in near real time using HICO’s data, instead of having to send scientists into the field, as pictured here. (EPA/Darryl Keith)

The U.S. Environmental Protection Agency (EPA) used HICO to develop a proof-of-concept to help monitor and protect our water supplies as required by the nation’s Clean Water Act. The work was originally funded by the EPA under a Pathfinder Innovation Project Award. The results were honored with a top research application award at the 2013 International Space Station Research and Development Conference. Darryl Keith, Ph.D., accepted the award on behalf of his research team regarding their work using HICO to gather imagery for ocean protection for the EPA.

EPA researchers went out and timed collections of their field observations with an over-flight of the space station. The scientists were able to put the data together to get better measurements for dissolved organic matter and chlorophyll A. This allowed them to develop models that suggest the presence of algal blooms, which present a danger to the health of sea life.

Map of chlorophyll-a for Pensacola Bay derived from HICO data. Higher values (yellow and red) indicate high chlorophyll concentrations in the water that suggest algal blooms are present. (EPA/Darryl Keith)
Map of chlorophyll-a for Pensacola Bay derived from HICO data. Higher values (yellow and red) indicate high chlorophyll concentrations in the water that suggest algal blooms are present. (EPA/Darryl Keith)

With the HICO proof-of-concept in hand, EPA researchers now are interested in using these models to develop an app that anyone can use to obtain real-time water quality information. The goal is to have algorithms that don’t require coordinating the space station or satellites with field data. The success of such a venture would mean real-time updates without anyone having to go into the field. This kind of an application developed by another government agency is really important for showing the broad value of the space station.

HICO has been converted into a space station facility, with open access for both users funded by NASA’s Earth Science Division, and also commercial users sponsored by the Center for the Advancement of Science in Space (CASIS) to use space station as a National Laboratory. Both organizations have announced opportunities to use the instrument. This is just the first of a number of remote sensing instruments headed for the space station that will transform the way this orbiting laboratory serves our need for data about the Earth below.

Julie A. Robinson, Ph.D.
International Space Station Program Scientist

Top Space Station Research Results Countdown: Nine, Understanding Mechanisms of Osteoporosis and New Drug Treatments

In today’s A Lab Aloft entry International Space Station Program Scientist Julie Robinson, Ph.D., continues her countdown of the top ten research results from the space station, recently presented at the International Astronautical Conference in Beijing, China. Be sure to check back for daily postings of the entire listing.

The next item in my top ten research results from the International Space Station countdown is related to its predecessor. The topic for number nine is understanding mechanisms of osteoporosis and new ways to treat it. In this case, however, we focus not on the humans as subjects, but on studies done with mice.

The pharmaceutical company, AMGEN, flew mice to and from the space station on three different assembly missions. These missions shed light on the impact of the space environment on bone health and related treatments. This study, called the Commercial Biomedical Testing Module (CBTM): Effects of Osteoprotegerin on Bone Maintenance in Microgravity, showed that mice treated with osteoprotegerin decreased bone resorption compared to untreated mice.

The Animal Enclosure Module above contains mice participating in the Commercial Biomedical Testing Module (CBTM) Effects of Osteoprotegerin on Bone Maintenance in Microgravity study on a shuttle assembly flight docked to the International Space Station. (NASA)
The Animal Enclosure Module above contains mice participating in the Commercial Biomedical Testing Module (CBTM) Effects of Osteoprotegerin on Bone Maintenance in Microgravity study during a space shuttle assembly flight docked to the International Space Station. (NASA)

The results from these studies have started to make their way to publication and to patients on Earth. As you can see in the images below from CBTM, the X-rays of the bones of the mice are quite telling. On the left is a ground control, in the middle is a mouse treated with an osteoprotegerin candidate drug, and on the right is a mouse in flight that’s not treated. You don’t have to be a sophisticated scientist to see those differences in the bone mass density—you can see them right on the X-ray.

X-rays of mouse bones from the CBTM study showing a ground control (left), as treated with Osteoprotegerin in microgravity (middle), and with no drug treatment during spaceflight (right). (L. Stodieck, Bioserve and T. Bateman, University of North Carolina)
X-rays of mouse bones from the CBTM study showing a ground control (left), as treated with Osteoprotegerin in microgravity (middle), and with no drug treatment during spaceflight (right). (L. Stodieck, Bioserve and T. Bateman, University of North Carolina)

The space experiment with osteoprotegerin, which was already developed and in clinical trials on the ground, was done to run tests in orbit to better understand the drug and how it functions. Those data were included in the development of the new drug applications by AMGEN, and that drug—called Prolia—came to market several years ago.

I’ve been meeting more and more women who are taking this drug to treat their osteoporosis; it can, of course, have serious side effects, but provides an alternative for some people who cannot take bisphosphonate drugs for their symptoms. The CBTM-2 and CBTM-3 studies look at bone and muscle loss in mice flown in space treated with other drugs working their way through clinical trials. It is gratifying to see a drug in patient care use today that comes from one of the first spaceflights of animals, and exciting to see pharmaceutical companies using the unique environment of spaceflight to improve health here on Earth.

I’m looking forward to the results that keep coming out from this research and the new expanded rodent capability beginning on the space station next year. The National Academy of Sciences have reported that rodent research is one of the most important areas for ensuring that the space station maximizes its benefits to the nation in scientific discovery and improving human health—you can see why!

Julie A. Robinson, Ph.D.
International Space Station Program Scientist

Top Ten Space Station Research Results Countdown: Ten, Preventing Loss of Bone Mass in Space Through Diet and Exercise

In today’s A Lab Aloft entry, International Space Station Program Scientist Julie Robinson, Ph.D., continues her countdown of the top ten research results from the space station, recently presented at the International Astronautical Conference in Beijing, China. Be sure to check back for daily postings of the entire listing.

This topic of research is the culmination of years of study, starting with the very first International Space Station flight investigation into the loss of bone by astronauts. During the first part of space station history, astronauts were losing about one and a half percent of their total bone mass density per month. That’s a rate similar to a post-menopausal woman’s bone loss for an entire year—which is really significant.

Quantitative computed tomography (QCT) images of hip bones. (T. Lang, University of California, San Francisco)
Quantitative computed tomography (QCT) images of hip bones. (T. Lang, University of California, San Francisco)

Early space station researchers first identified this loss rate. Then they found that the exercises we were having the crew perform were not really providing the right forces to counter the bone mass reduction. Scientists started looking at crew member diet and exercise routines, along with the addition of upgraded exercise hardware. This progression culminated in the September 2012 publication in the Journal of Bone and Mineral Research.

Scientists found that the correct mixture of set durations of high-intensity resistive exercise, combined with the right amount of dietary supplementation for vitamin D and specific caloric intake were key for bone health. With all of these things together, the astronauts could return to Earth after living in space without having lost significant bone mass. This is just one solution; there may be others. But this is a viable answer to an issue identified clear back during the Gemini missions, addressing a huge problem when humans go into space and lose gravity loading on their bodies.

Astronaut Lee Archambault, commander of the STS-119 mission, conducts an Advanced Resistive Exercise Device (ARED) workout in the Unity node aboard the International Space Station. (NASA)
Astronaut Lee Archambault, commander of the STS-119 mission, conducts an Advanced Resistive Exercise Device (ARED) workout in the Unity node aboard the International Space Station. (NASA)

With this research, we can better understand how bone changes throughout life, in growth and aging, and how to prevent outcomes such as age-related bone fractures. This topic received an award at this year’s International Space Station Research and Development Conference, recognizing the community of NASA and academic scientists for carrying out research to define the extent and characteristics of bone loss in spaceflight, and for developing exercise- and drug-based approaches to attack the problem. Thomas Lang, Ph.D., professor of Radiology and Biomedical Imaging at the University of California San Francisco, was the recipient of the team award in recognition of outstanding results on preventing bone loss in long-duration spaceflight.

This is important of course for future exploration by astronauts, but also for patients on the ground. The paper made the cover of the Journal of Bone and Mineral Research, due to the fact that it provides a very different way of looking at bone loss from what is typical in the osteoporosis research community.

When most women are diagnosed with osteoporosis, the next thing their doctor will tell them is: “Well, stay active, go walking, but don’t do anything too rigorous.” We found that by doing rigorous exercise, however, astronauts that don’t have other kinds of health issues were able to protect their bone. It’s going to take some time for the medical community to absorb how these results with astronauts might be applicable to others, especially those on the ground. This is a compelling result for the whole world, because it gives us insights into how bone is formed and maintained in the human body that could not have been obtained any other way.

Julie A. Robinson, Ph.D.
International Space Station Program Scientist

Sowing the Seeds for Space-Based Agriculture – Part 2

In today’s A Lab Aloft, Charlie Quincy, research advisor to the International Space Station Ground Processing and Research director at NASA’s Kennedy Space Center in Florida, continues to share the growing potential of plants in space and the new plant habitat that will help guide researchers.

As astronauts continue to move away from Earth, our ties back to our planet are going to be strained. We won’t have the capability to jump into a return capsule and be back to Earth in 90 minutes.

To move further away from Earth, we have to continue to develop more autonomous systems in our spacecraft that supply our fundamental needs for oxygen production and carbon dioxide (CO2) removal, clean water and food. The genetic coding in plants to perform these functions has been refined and improved for the past 3-4 billion years as plants have continually evolved on Earth. So the code is pretty good. As long as we can provide biological organisms like plants or algae with the nutrients and support systems they need, they will pretty much know what to do. What they will do is clean water, change CO2 into oxygen and generate food. From a life support system, that’s kind of what you want to happen.

There are some interesting things about plants that we’ll have to deal with in space. For instance, we don’t have bumblebees in orbit, so who does the pollination? Who goes from flower to flower? We’ve actually had astronauts using cotton swabs to move pollen from one flower to another, in particular when we were growing strawberries a few years back. As we get more and more into it, we need to figure out how to do this without using the crew, since it would not be efficient to have them pollinating a field with cotton swabs.

Plant Blog B_1
View of willow trees in an Advanced Biological Research System (ABRS) incubator for the Advanced Plant Experiments on Orbit – Cambium (APEX-Cambium) experiment aboard the International Space Station during Expedition 21. (NASA)

We have quite a number of things going on and coming to fruition on the International Space Station. We currently have a small habitat called the Advanced Biological Research System (ABRS) in orbit performing fundamental studies of plant growth in the microgravity environment. It has two independent chambers that are tightly controlled and have LED lights. We can manage moisture delivery, CO2 and trace gases inside those chambers and do some real hard science investigations. The Russian segment has a habitat, too, called the Lada greenhouse.

The Advanced Plant Habitat (APH) is a similar chamber under development, but that one will be larger. The APH will enable us to use larger plants and different species, all of which will be tightly controlled during growth investigations.

Another really exciting new system launching to the space station probably around the middle of next year is the Vegetable Production System (Veggie). It will begin bridging the gap between a pure science facility and a food production system. We are in the ground testing phase of the flight unit to assure it is safe for operation aboard the station with the help of the facility’s builder, Orbital Technologies Corporation of Madison, Wis. Orbitec. They also will manufacture the APH.

The beauty of the Veggie unit is that it’s really just a light canopy with a fan and a watering mat for growing plants, using the cabin atmosphere aboard the space station. The crew will have an opportunity to farm about two and a half square feet, which is a pretty good sized growing area. This system also has great potential as a platform for educational programs at the high school level, where students could grow the same plants in similar systems in their classrooms.

Plant Blog B_2
The Veggie greenhouse will fit into an EXPRESS Rack on the International Space Station for use with plant investigations in orbit. (NASA)

We’re going to start growing lettuce plants in Veggie next year as a test run, because lettuce is well suited for this initial testing. Lettuce is a good first crop selection because it is a rapid growing plant, with a high edible content, and generally has a small micro flora content.  We will be using specially designed seed pillows to contain the below ground portion of the lettuce plant containing the roots, rooting media, and moisture delivery system. The plants will sprout and grow up through those pillows. Ultimately scientists will be able to grow larger plants like dwarf tomatoes or peppers.

We are continuing to do the testing associated with making sure the food grown in the closed environment of the space station is safe to eat for the crew. We hope that within a short period we will be able to augment the astronauts’ diets with herbs and spices and maybe onions, peppers or tomatoes, something to give the crunch factor. Ultimately, we hope to move to even larger chambers to begin producing more of the staple crops, such as potatoes or beans.

All of these new plant systems should be up and running in the very near future. Veggie should be aboard station next year, and by the middle of 2015 we expect to deploy the APH, completing the suite of plant facilities in orbit.

When talking about life-support systems for spaceflight, there’s obviously a more complicated viewpoint that says the systems that connect all that together are pretty elaborate and cumbersome. There are reservoirs, hoppers and a vast array of other things that have to be in place to operate a bioregenerative system, which makes them big and, in some cases, energy intensive. On short-duration missions we would probably do better packing a picnic lunch and taking only the support systems we need. The further we are away from Earth, and the longer it takes us to get back, however, drives systems planning in the regenerative direction. What we’re doing is laying the groundwork that will enable those kinds of decisions to be made for long-duration exploration.

Plant Blog B_3
NASA astronaut Mike Fossum, Expedition 28 flight engineer, inspects a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload with its Lada-01 greenhouse in the Zvezda service module of the International Space Station. (NASA)

There’s a more near-term thing that we’re also looking at, which is the therapeutic aspects of growing plants. People have been exercising their “green thumbs” for this reason for years. They plant their little gardens, and the aromas of plants have a very positive impact on the way these people feel about things. The psychological effects of keeping plants are still somewhat unknown, and we’re hoping to get better insight into that. These effects include the nurturing aspects of watching something grow and caring for it. During spaceflight, far from Earth or on a long-duration mission, a totally sterile environment may not be what is desired. While you can’t have a pet dog or cat to make your living space a little more homey, perhaps you could have a pet plant to care for, as it provides oxygen and sustenance.

Charlie Quincy has been the Space Biology project manager at Kennedy Space Center for the past 13 years. His efforts include both flight and ground research aimed at expanding the current science knowledge base, solving issues associated with long-duration spaceflight and distributing knowledge to Earth applications. He is a registered professional engineer and has a master’s degree in Space Technologies. 

 

Sowing the Seeds for Space-Based Agriculture – Part 1

In today’s A Lab Aloft, Charlie Quincy, research advisor to the International Space Station Ground Processing and Research director at NASA’s Kennedy Space Center in Florida, shares the growing potential of plants in space and the new plant habitat that will help guide researchers. The blog continues in Part 2.

There are forces that work together on this planet that we take for granted when it comes to how plants grow and thrive. Here at NASA’s Kennedy Space Center we are in the process of identifying those things and how we can engineer facilities that replicate them in the closed system environment of a space vehicle or habitat, such as the International Space Station.

Within closed systems, there is limited or no exchange with the broader environment, we are specifically interested in closing the water, oxygen, and carbon loops for long duration space flight.  We have found that plants have well defined processes to perform the conversions necessary to close loop when supplied with light energy.

The wonderful thing about plants is that they pretty much know what they are supposed to do, as long as you give them an atmosphere they like. There are a couple of things that microgravity makes a little more tricky. There’s no convection mixing, for instance, in the atmosphere aboard the space station—which has a carbon dioxide (CO2) level of around 10 times what we see on Earth.

Crops tested in Vegetable Production System (Veggie) plant pillows (pictured here) include lettuce, Swiss chard, radishes, Chinese cabbage and peas. (NASA)

Crops tested in Vegetable Production System (Veggie) plant pillows (pictured here) include lettuce, Swiss chard, radishes, Chinese cabbage and peas. (NASA)

Plants take in CO2 and give off oxygen. This process occurs at the stomata on the bottom of the leaf; without convection mixing or wind, you get high concentrations of oxygen around the stoma and no CO2 coming in. We need to learn how much air movement in the chamber is necessary to force the oxygen away from the leafs and allow the CO2 to replace it.

Also, plants and their fruiting are very sensitive to various trace gases. Any time you have a closed system with little new makeup air being added, like aboard the space station, you have a buildup of trace gases. The gases, such as ethylene, that have a regulatory effect on plant growth need to be removed so plants can progress through their normal maturing process.

Without the force of gravity acting on the plant, we also have to make provisions to ensure the stems grow toward the light and the roots grow toward the water. The secondary capabilities of plants to orient themselves are still being worked out in basic science investigations.

Crew image of the Advanced Plant Experiments on Orbit -- Transgenic Arabidopsis Gene Expression System (APEX-TAGES) study during Expedition 23. (NASA)

Crew image of the Advanced Plant Experiments on Orbit — Transgenic Arabidopsis Gene Expression System (APEX-TAGES) study during Expedition 23. (NASA)

Thinking about how this work relates to what we grow on Earth, Ray Wheeler, another NASA scientist, and I were in Chicago at a commercial activity called “The Plant” to see how the people there incorporate the concepts of bioregenerative farming into their operation. This is a group of people who took an old building, formerly a meat packing house, and are trying to create a closed ecological system. They use this environment to grow plants, produce products for their store, restaurant and production facilities, and they use the waste products to generate energy for the growth facility.

NASA is interested in these facilities because they are a large venture compared to our space station operations, facing similar but different challenges. We are basically trying to do the same thing on a small scale; somewhere in the middle is what might be on a space habitat. We are setting up systems in balance and to make this balance we need to incorporate buffers and reservoirs and manage energy needs.

We are looking for opportunities where people are having success in creating these balanced systems. Working with organizations like The Plant, we learn together and push information back and forth to achieve our mutual and specific goals. Urban farming is becoming more and more common around the world and our closed system space flight goals to manage energy use and producing fresh food have much in common. Working together with this broader community will bring more solutions into play and help to uncover the best options.

Farming is no longer isolated to rural areas and the agriculture industry is growing to include urban farms. If you look at a city like New York, you’ll see little greenhouses on the roofs of almost every building. Many of those greenhouses are associated with the restaurants located on the first floor. If you have a Jamaican restaurant, for instance, they’ll have herbs and spices they’ve brought from Jamaica that they grow on their roofs. Farming for immediate use is exactly what we’re doing and we can learn from each other.

This New York-based rooftop greenhouse is an example of a closed ecological system here on Earth. (Credit: Ari Burling)

This New York-based rooftop greenhouse is an example of a closed ecological system here on Earth. (Credit: Ari Burling)

Within our ground research activities at Kennedy we have tested a broad range of crops and support systems in our growth chambers over the years. We have published hundreds of papers on our results, many of which have broad application for the agriculture industry. We also have seen and published results on the impacts of trace gases on food production, as well as different colored lighting and photo periods on plant performance. This type of information can have a tremendous impact on our global agriculture industry.

It’s really interesting how everything ties together. By pushing the boundaries and adding to our understanding of plant life we can continue to learn from each other and share benefits. We can help plants on the ground and in orbit do what they do best: grow!

Charlie Quincy has been the Space Biology project manager at Kennedy Space Center for the past 13 years. His efforts include both flight and ground research aimed at expanding the current science knowledge base, solving issues associated with long-duration spaceflight and distributing knowledge to Earth applications. He is a registered professional engineer and has a master’s degree in Space Technologies.  

Women in Space Part One, Female Firsts in Flight for Space Exploration and Research

In today’s A Lab Aloft, guest blogger Liz Warren, Ph.D., recalls the inspirational contributions and strides made by women in space exploration and International Space Station research.

This month we celebrate the anniversaries of three “firsts” for female space explorers. On June 16, 1963, Valentina Tereshkova of the Soviet Union became the first woman in space. Then on June 18, 1983, Sally Ride became America’s first woman in space, followed by Liu Yang as China’s first woman in space on June 16, 2012. Though their flight anniversaries are not in June, I would be remiss if I did not mention the first European woman in space: Helen Sharman in 1991; the first Canadian woman: Roberta Bondar in 1992; and the first Japanese woman: Chiaki Mukai in 1994.

Women in space_1

At the Gagarin Cosmonaut Training Center in Star City, Russia, Dec. 2, 2010, NASA astronaut Cady Coleman (right), Expedition 26 flight engineer, meets with Valentina Tereshkova, the first woman to fly in space, on the eve of Coleman’s departure for the Baikonur Cosmodrome in Kazakhstan, where she and her crewmates, Russian cosmonaut Dmitry Kondratyev and Paolo Nespoli of the European Space Agency launched Dec. 16, Kazakhstan time, on the Soyuz TMA-20 spacecraft to the International Space Station. Tereshkova, 73, became the first woman to fly in space on June 16, 1963, aboard the USSR’s Vostok 6 spacecraft. (NASA/Mike Fossum)

Each of these milestones built upon each other by inspiring the next wave of female explorers, continuing through today with the women of the International Space Station and beyond. With this in mind, I’d like to take a moment to celebrate women in space and highlight those with a connection to space station research. It is amazing to me to see just how connected these seemingly separate events can be. The steps of the intrepid explorers who engage in space exploration set the course for future pioneers, blazing the trail and providing the inspiration for those who follow.

To date, 57 women including cosmonauts, astronauts, payload specialists and foreign nationals have flown in space. Our current woman in orbit is NASA astronaut Karen Nyberg, working aboard the space station as a flight engineer for Expeditions 36 and 37. While Nyberg lives on the orbiting laboratory for the next six months, she will perform experiments in disciplines that range from technology development, physical sciences, human research, biology and biotechnology to Earth observations. She also will engage students through educational activities in addition to routine vehicle tasks and preparing her crewmates for extravehicular activities, or spacewalks.

Women in space_2

NASA astronaut Karen Nyberg performs a test for visual acuity, visual field and contrast sensitivity. This is the first use of the fundoscope hardware and new vision testing software used to gather information on intraocular pressure and eye anatomy. (NASA)

Many of the women who have flown before Nyberg include scientists who continued their microgravity work, even after they hung up their flight suits. In fact, some of them are investigators for research and technology experiments recently performed on the space station. Whether inspired by their own time in orbit or by the space environment, these women are microgravity research pioneers ultimately looking to improve the lives of those here on Earth.

Chiaki Mukai, M.D., Ph.D. of the Japanese Aerospace Exploration Agency, for instance, served aboard space shuttle missions STS-65 and STS-95. She now is an investigator for the space station investigations Biological Rhythms and Biological Rhythms 48, which look at human cardiovascular health. She also is the primary investigator for Hair, a study that looks at human gene expression and metabolism based on the human hair follicle during exposure to the space station environment. MycoMyco 2Myco 3, other investigations run by Mukai, look at the risk of microorganisms via inhalation and adhesion to the skin to see which fungi act as allergens aboard the space station. Finally, Synergy is an upcoming study Mukai is leading that will look at the re-adaptation of walking after spaceflight.

Women in Space_3

STS-95 payload specialist Chiaki Mukai is photographed working at the Vestibular Function Experiment Unit (VFEU) located in the Spacehab module. (NASA)

Peggy Whitson, Ph.D. served aboard the space shuttle and space station for STS-111Expedition 5STS-113, and Expedition 16. She also is the principal investigator for the Renal Stoneinvestigation, which examined a countermeasure for kidney stones. Results from this science have direct application possibilities by helping scientists understand kidney stone formation on Earth. Whitson, who blogged with A Lab Aloft on the importance of the human element to microgravity studies, also served as the chief of the NASA Astronaut Office at the agency’s Johnson Space Center in Houston from 2009 to 2012.

Women in Space_4

Expedition 16 Commander Peggy Whitson prepares the Capillary Flow Experiment (CFE) Vane Gap-1 for video documentation in the International Space Station’s U.S. Laboratory. CFE observes the flow of fluid, in particular capillary phenomena, in microgravity. (NASA)

Sally Ride, Ph.D. (STS-7STS-41G) initiated the education payload Sally Ride EarthKAM, which was renamed in her honor after her passing last year. This camera system allows thousands of students to photograph Earth from orbit for study. They use the Internet to control the digital camera mounted aboard the space station to select, capture and review Earth’s coastlines, mountain ranges and other geographic areas of interest.

Women in Space_5

Astronaut Sally Ride, mission specialist on STS-7, monitors control panels from the pilot’s seat on space shuttle Challenger’s flight deck. Floating in front of her is a flight procedures notebook. (NASA)

Millie Hughes-Fulford, Ph.D. (STS-40) has been an investigator on several spaceflight studies, including Leukin-2 and the T-Cell Activation in Aging study, which is planned to fly aboard the space station during Expeditions 37 and 38. This research looks at how the human immune system responds to microgravity, taking advantage of the fact that astronauts experience suppression of their immune response during spaceflight to pinpoint the trigger for reactivation. This could lead to ways to “turn on” the body’s natural defenses for those suffering from immunosuppression on Earth.

Hughes-Fulford has been a mentor to me since I was in high school. It was Hughes-Fulford who encouraged me to pursue a career in life sciences, and she also invited me to attend her launch aboard space shuttle Columbia on STS-40, the first shuttle mission dedicated to space life sciences. In fact, STS-40 also was the first spaceflight mission with three women aboard: Hughes-Fulford; Tammy Jernigan, Ph.D.; and Rhea Seddon, M.D.

I followed Hughes-Fulford’s advice, and, years later, I found myself watching STS-84 roar into orbit carrying the life sciences investigation that I had worked on as a student at the University of California, Davis. In the pilot’s seat of shuttle Atlantis that morning was Eileen Collins, the first woman to pilot and command the space shuttle. Our investigation, Effects of Gravity on Insect Circadian Rhythmicity, was transferred to the Russian space station Mir, where the sleep/wake cycle of insects was studied to understand the influence of spaceflight on the internal body clock.

Women in Space_6

Payload Specialist Millie Hughes-Fulford checks the Research Animal Holding Facility (RAHF) in the Spacelab Life Sciences (SLS-1) module aboard space shuttle Columbia. (NASA)

Women at NASA always have and continue to play key roles in space exploration. Today we have female flight controllers, flight directors, spacecraft commanders, engineers, doctors and scientists. In leadership positions, Lori Garver is at the helm as NASA’s deputy administrator, veteran astronaut Ellen Ochoa is director of Johnson; and Lesa Roe is director of NASA’s Langley Research Center in Hampton, Va.

In space exploration and in science, we stand on the shoulders of those who came before us. These women pushed the boundaries and continue to expand the limits of our knowledge. What an incredible heritage for the girls of today who will become the scientists, engineers, leaders and explorers of tomorrow.

Liz Warren

Liz Warren, Ph.D., communications coordinator for the International Space Station Program Science Office. (NASA)

Liz Warren, Ph.D., is a physiologist with Barrios Technology, a NASA contractor. Her role in the International Space Station Program Science Office is to communicate research results and benefits both internally to NASA and externally to the public. Warren previously served as the deputy project scientist for Spaceflight Analogs and later for the ISS Medical Project as a science operations lead at the Mission Control Center at NASA’s Johnson Space Center in Houston. Born and raised near San Francisco, she has a Bachelor of Science degree in molecular, cellular and integrative physiology and a doctorate in physiology from the University of California at Davis. She completed post-doctoral fellowships in molecular and cell biology and then in neuroscience. Warren is an expert on the effects of spaceflight on the human body and has authored publications ranging from artificial gravity protocols to neuroscience to energy balance and metabolism.

When Finding Nothing Means Discovering Something

In today’s blog, Dr. Sara Zwart shares with thereaders of A Lab Aloft her thoughts and experiences as a scientist, includinghow sometimes data showing nothing can actually indicate something!

It’salways exciting to make new scientific discoveries. But though it may soundcounter intuitive, sometimes it can be just as important to find nothing. When looking at researchresults, a lack of change can actually indicate that you have found something, which can lead tounanticipated, but amazing discoveries. This has happened twice in the pastyear at NASA’s Nutritional Biochemistry Laboratory as part of the NutritionalStatus Assessment experiment, or Nutrition.

Thegoal of the Nutrition study is to understand what changes in an astronaut’shealth while they live aboard the International Space Station. Improvedknowledge in how humans react to living in space for long durations can helpprepare NASA for future exploration to Mars, as well as help in understanding howwell current efforts to counteract the negative effects of microgravity work.These countermeasures include exercise and a carefully planned diet, among otherthings.

Forthis study, astronauts collect blood and urine samples during flight, as well onthe ground during the routine pre- and postflight testing. Before they fly, crewmembers train on how to take blood from each other or from themselves, and theyalso can practice collecting urine, which can be tricky in microgravity!


Groundtraining helps to prepare the crew for sample collection for the NutritionalStatus Assessment experiment, or Nutrition. (NASA Image JSC2006E27274)

Uponreturn to Earth, crew member samples are analyzed for a broad range ofchemicals and biochemicals, from nutrients to bone and muscle markers tohormones and other compounds. One of the nutrients we study is vitamin K, whichis a crucial vitamin for blood clotting, and it also has an important role in maintainingbone health. 

Earlystudies from the space station Mir provided evidence that vitamin K status maybe lower during space flight, and researchers suggested that vitamin K shouldbe investigated as a potential countermeasure for bone loss. Those earlystudies on Mir involved only one or two crew members, and a food system differentfrom the one we use today on station. 


Acrew member works with test samples in the Human Research Facility 2 (HRF-2)Refrigerated Centrifuge as a part of the Nutritional Status Assessment(Nutrition) experiment in the Columbus laboratory of the International SpaceStation. (Credit: NASA)

ForNutrition, we measured vitamin K status from markers in the blood and urine in15 station crew members at five different time points during their mission. Wefound no evidence for decrements in vitamin K status. In other words, vitamin Kis still important for health, blood and bones, but there is no evidence thatmore would be better.

Thesetypes of “negative” findings are important. In this case, we learned that thecurrent space food system is sufficient to maintain vitamin K status inastronauts. What’s further, at this time there is no basis for recommendingvitamin K supplements to prevent bone loss that occurs during space flight. 


ANASA astronaut places samples into the Minus Eighty Laboratory Freezer for ISS(MELFI-1).
(Credit: NASA)

Hormonescan be measured in the crew’s blood and urine samples, providing valuableinformation on a number of the body’s systems. One hormone that we measured aspart of the Nutrition study was testosterone. This is an important hormone inthe body for building up and maintaining bone and muscle mass. 

Someearlier studies suggested that there may be lower levels of testosterone inastronauts during space flight, which may contribute to some of the observed boneand muscle loss. As part of this study, we measured the blood levels of testosteroneat five different time points during space flight to test this hypothesis.Again, 15 station crew members provided samples, however the analysis showedthat no changes to testosterone occurred during flight. 

Oncemore, these negative findings provided important information in working tounderstand how the human body adapts to microgravity exposure. This is especiallytrue when we consider ways to counteract some of the known negative effects ofweightlessness, including bone and muscle loss. By narrowing the causes ofthese concerns to human health in space, we get closer to identifying the rootcauses and providing significant countermeasures.

Sara Zwart, Ph.D., and hercolleague Scott Smith, Ph.D., lead NASA’s Nutritional Biochemistry Lab atJohnson Space Center. The testosterone research discussed above was publishedin the Journal of ClinicalEndocrinology and Metabolism (epub:doi:10.1210/jc.2011-2233), and the vitamin K work was published in the Journalof Bone and Mineral Research (26:948-54,2011). In addition to ground-research studies, Zwart and Smith lead two spacestation experiments, NutritionalStatus Assessment and ProK, in which they investigate the roles of animal protein and potassium inmitigating bone loss.

Touching Lives via International Space Station Benefits

We are proud to announce the new International Space Station Benefits for Humanity website. Today’s entry highlights how this international collaborative effort communicates positive impacts to life here on Earth from space station research and technology.

Last month at the International Space Station Heads of Agencies meeting in Quebec, Canada, my international counterparts and I had the opportunity to share the results of more than a year’s worth of work across the international partnership. This collaboration culminated in the launch of the International Space Station Benefits for Humanity website, which looks at the early results from the space station and highlights those that have returned major benefits to humanity.

This website was translated into all the major partner languages and there also is a downloadable book format. The 28 stories found on the site focus on human health, education, and Earth observation and remote sensing, but these are just some of the benefit areas. Others, such as the knowledge gained for exploration or basic scientific discovery, are found on the space station results and news websites.

It can be a bit challenging at first see which station efforts will generate direct Earth benefits. This is because when we do the research, we finish things on orbit and then it can take two to five years for the results to publish, and possibly another five years after that before the knowledge yields concrete returns. I think each of us, while developing these stories, found things that surprised us. I suspect readers will, too. Some of these developments and findings are so amazing they go straight to your heart!

For example, the Canadian Space Agency robotic technology developed for the Canadarm was really cutting edge; now it has been applied to a robotic arm that can assist with surgery. Brain surgeons have used this robotic arm to help some patients who were not eligible for a standard operation, because the surgeries were too delicate for human hands. With the robotic assist, still in the testing phase, they were able to save the lives of several patients. This is a remarkable development.


Paige Nickason was the first patient to have brain surgery performed by the neuroArm robot, developed based on International Space Station technology. (Jason Stang) View large image

Another area where space technology returns offer a benefit to humanity is in the ability to provide clean water in remote regions and disaster areas. We also have stories about the ability to use station related telemedicine to improve the success and survival for women and their babies, if they anticipate complications during delivery. Providing a remote diagnosis to women in hard-to-reach areas enables them to seek life-saving medical care. These are just a few of the remarkable returns from space technologies.


Expectant women around the world can experience safer deliveries in part due to International Space Station technology in telemedicine. (Credit: Scott Dulchavsky)

The website also includes stories that focus on the research knowledge obtained during station investigations. One particular area gaining attention is vaccine development. Scientists are now creating candidate vaccines for salmonella that fight food poisoning, as well as one in the works for MRSA—an antibiotic resistant bacteria that is very dangerous in hospitals.


An example of Salmonella invading cultured human cells. (Rocky Mountain Laboratories, NIAID, NIH) View large image

We also see ongoing benefits in the area of Earth observation, which our Japanese colleagues compellingly described after the Fukushima earthquake in Japan. The Japanese people were responding to that event in such courageous ways. Having information about what was going on really helped and the global community mobilized all the possible Earth remote sensing resources to provide aid via imagery of the disaster. The station provided imagery and data of the flooding from the original tsunami surge. I would like to share with you the comments of my JAXA colleague, Shigeki Kamigaichi, who was on the ground after the disaster:

“The Earth observation by astronauts from the International Space Station brought us several impressive image data offerings. Furthermore, the crew comments concerning the tsunami damage from March 11, 2011, to the people who suffered gave us a feeling of oneness and relief.”


Oblique image of the Japanese coastline north and east of Sendai following inundation by a tsunami. The photo was taken Mar. 13, 2011. Sunglint indicates the widespread presence of floodwaters and indicates oils and other materials on the water surface. (NASA) View large image

One of the exciting things about Earth observations work is that the station passes over populated parts of the world multiple times a day. Our Russian colleagues shared some examples of work they had done to track pollution in the Caspian Sea using data from the space station. They also used Uragan imagery to understand a major avalanche in the Russian Caucasus region, determining glacial melting as the root cause of the avalanche. These imaging efforts really help as we look at ways to better respond and predict disasters and prevent future loss of life.


Oil pollution in the northern part of the Caspian Sea, on the basis of data received from the Uragan experiment: 40 oilfields, equaling approximately 10 percent of the surface covered with oil film. (Roscosmos) View large image

Of course, there also are the compelling educational benefits from the space station. It is inspiring to see students get excited about science, technology, engineering and math, simply by connecting them to space exploration. Education is a bonus, since this is not why you build a laboratory like this. Once you have that laboratory, however, you can make a huge impact in children’s futures.

One of the most widely influential examples of educational benefits are when we hear students from all over the world, not just station partners, using HAM radio contacts to speak with astronauts aboard station. This happens on the astronauts’ free time, when they can just pick up the ham radio and contact hundreds of students through amateur radio networks. These children ask questions and learn about everything from space to life aboard the station to how to dream big. It is a recreational activity for the astronauts, taking just a few minutes, but the students are touched for a lifetime.

Because this effort is so readily routed internationally, students in developing countries can benefit just as easily as students in other areas. In fact, 63 countries already have participated with the space station; a much larger number than the 15 partner countries. Education activities are a core international benefit.


A student talks to a crew member aboard the International Space Station during an ARISS contact. (Credit: ARISS) View large image

While this initial launch of the Benefits for Humanity website was a big release, it is something we plan to maintain and continue over time with our partners. The work for these derivatives of station activities will continue to roll out over time, but we anticipate it to grow. When you have hundreds of experiments active during any six-month period on orbit, the throughput and the amount of crew time going to research each week is unprecedented!

The experiments are being completed faster than ever before and we are going to see these benefits and results coming out much more quickly, so it is an exciting time. It is important to start talking about these developments as we turn the corner from assembly to the full mission of research aboard this one-of-a-kind orbiting laboratory.


Julie A. Robinson, Ph.D.
International Space Station Program Scientist


Remembering Janice Voss

The International Space Station Program Science Office would like to dedicate this entry of A Lab Aloft to the life and work of astronaut Janice Voss, who passed away February 7, 2012. Her support NASA’s vision for science on orbit was a remarkable contribution to our research mission.

Janice Voss, Ph.D., was an astronaut and mission specialist for five space shuttle missions, logging over 49 days in space. These were physical science flights, including STS-83 and STS-94, which were historic re-flights to achieve a singular microgravity research mission. Voss also flew the first “commercial” Spacehab and the radar mapping mission.


June 27, 1993 — Inside the SPACEHAB module, onboard the space shuttle Endeavour, astronaut Janice Voss, STS-57 mission specialist, works with biomaterials products. (Credit: NASA Image STS05739001)

With a real love for physical sciences, Voss used her dedication to research to determine her next role as NASA transitioned from the shuttle era to the station era. Voss was the only crew member ever selected to serve as a Lead Increment Scientist to represent the research community during experiment operations. She worked in this role during Expeditions 8 and 9.  

“Her boundless enthusiasm for getting as much research done was contagious, especially welcome in the challenging time after Columbia,” remembers John Uri, her manager in the ISS Payloads Office at the time. “Her experiences from flying science missions as an astronaut were invaluable in optimizing the onboard research.”


April 4-8, 1997 — Astronaut Janice Voss, payload commander, pictured here following a successful test at the Combustion Module-1. The test was designed to study the Structures of Flame Balls at Low Lewis, or SOFBALL, numbers.
(Credit: NASA Image STS083305017)

The timing of her tenure, which followed the Columbia tragedy, led to one of the more interesting things that happened while Voss was Lead Increment Scientist. While the shuttle was grounded, researchers proposed experiments that could be done with existing materials on orbit.

The International Space Soldering Investigation, or ISSI, was one of these studies performed in microgravity. The crew used the soldering materials they had on orbit to make coupons and melt them, which led to an amazing result! The rosin that was in the solder boiled out to the outside of the coupons, orbiting around them.


In July 2004 astronaut Mike Fincke melts solder onboard the International Space Station. See the full length movies: Windows media format (2 MB), Real video (2 MB), mpeg format (15 MB). (Credit: NASA)

I remember how excited Janice was about this new finding. She worked with scientists to evaluate what caused the orbital effect, with the final determination pointing to Marangoni convection. Voss presented the results in a press briefing, including the incredible video of the experiment.

Later on, as Voss was assigned to different things in the Astronaut Office, she became the ongoing research representative for a number of years. There she represented the crew office, but always with the perspective she carried with her from her time as a Lead Increment Scientist, which made her viewpoint unique.

Voss had a natural scientific curiosity that prompted her to always try different things. She never accepted at face value how things worked, and would try alternatives to investigate further. This questioning nature was an exceptional attribute and helped to make her a success in her many roles with NASA.


Julie A. Robinson, Ph.D.
International Space Station Program Scientist