Bright Fireball Spotted Over Michigan

A bright fireball lit up skies over Michigan at 8:08 p.m. EST on Jan. 16, an event that was witnessed and reported by hundreds of observers, many who captured video of the bright flash.

Based on the latest data, the extremely bright streak of light in the sky was caused by a six-foot-wide space rock — a small asteroid. It entered Earth’s atmosphere somewhere over southeast Michigan at an estimated 36,000 mph and exploded in the sky with the force of about 10 tons of TNT. The blast wave felt at ground level was equivalent to a 2.0 magnitude earthquake.

The fireball was so bright that it was seen through clouds by our meteor camera located at Oberlin college in Ohio, about 120 miles away.

Events this size aren’t much of a concern. For comparison, the blast caused by an asteroid estimated to be around 65 feet across entering over Chelyabinsk, Russia, was equivalent to an explosion of about 500,000 tons of TNT and shattered windows in six towns and cities in 2013. Meteorites produced by fireballs like this have been known to damage house roofs and cars, but there has never been an instance of someone being killed by a falling meteorite in recorded history.

The Earth intercepts around 100 tons of meteoritic material each day, the vast majority are tiny particles a millimeter in diameter or smaller. These particles produce meteors are that are too faint to be seen in the daylight and often go unnoticed at night. Events like the one over Michigan are caused by a much rarer, meter-sized object. About 10 of these are seen over North America per year, and they often produce meteorites.

There are more than 400 eyewitness reports of the Jan. 16 meteor, primarily coming from Michigan. Reports also came from people in nearby states and Ontario, Canada, according to the American Meteor Society. Based on these accounts, we know that the fireball started about 60 miles above Highway 23 north of Brighton and travelled a little north of west towards Howell, breaking apart at an altitude of 15 miles. Doppler weather radar picked up the fragments as they fell through the lower parts of the atmosphere, landing in the fields between the township of Hamburg and Lakeland. One of the unusual things about this meteor is that it followed a nearly straight-down trajectory, with the entry angle being just 21 degrees off vertical. Normally, meteors follow a much more shallow trajectory and have a longer ground track as a result.

Shows the trajectory of the meteor.
This image shows the trajectory of the meteor as determined by the eyewitness accounts posted on the American Meteor Society Website. It is likely that there are meteorites on the ground near this region. (American Meteor Society)

NASA’s Short-term Prediction Research and Transition Center reported that a space-based lightning detector called the Geostationary Lightning Mapper — “GLM” for short — observed the bright meteor from its location approximately 22,300 miles above Earth. The SPoRT team helps organizations like the National Weather Service use unique Earth observations to improve short-term forecasts.

GLM is an instrument on NOAA’s GOES-16 spacecraft, one of the nation’s most advanced geostationary weather satellites. Geostationary satellites circle Earth at the same speed our planet is turning, which lets them stay in a fixed position in the sky. In fact, GOES is short for Geostationary Operational Environmental Satellite. GLM detected the bright light from the fireball and located its exact position within minutes. The timely data quickly backed-up eyewitness reports, seismic data, Doppler radar, and infrasound detections of this event.

Data from NOAA's GOES-16 space-based weather satellite
Data from NOAA’s GOES-16 space-based weather satellite detected a bright flash of light over southeast Michigan around the time a meteor entered Earth’s atmosphere. (NASA/SPoRT)

Much like the nation’s weather satellites help us make decisions that protect people and property on Earth, NASA’s Meteoroid Environment Office watches the skies to understand the meteoroid environment and the risks it poses to astronauts and spacecraft, which do not have the protection of Earth’s atmosphere. We also keep an eye out for bright meteors, so that we can help people understand that “bright light in the night sky.”

Total Solar Eclipse: The Physics of Light

By Kevin Matyi

The motion of the moon is what causes eclipses, but the dramatic change in sunlight is what makes them so impressive to observers. But what exactly is happening when the moon passes in front of the sun?

The moon is blocking the sun’s light from reaching Earth, but there is more to the situation than just that. Their relative distance to Earth is one of the most important factors.

The sun is about 400 times farther from Earth than the moon and has a diameter about 400 times larger than the moon. As a result, both the sun and moon (near perigee) appear to be the same size in the sky, allowing the moon to perfectly block out the sun and cast a shadow on Earth during a total eclipse.

The shadow we see while in the path of totality is called the umbra, and the shadow of the surrounding partial eclipse is a penumbra. The shadow from an annular eclipse (when the moon appears smaller than the sun during an eclipse, and so a ring of light is visible around it) is called an anteumbra.

The physics of how each type of shadow is formed is difficult to explain but easy to visualize, so before I tell you about them, here is a picture (technically a ray diagram) of what happens during an eclipse:

Each of the three types of solar eclipse are caused by the moon blocking light from different parts of the sun.
Each of the three types of solar eclipse are caused by the moon blocking light from different parts of the sun.
Credit: Wikimedia Cmglee

For a total eclipse, the moon has to block out all of the sun’s light. To put the moon in the best position, imagine that a person on Earth is standing under the exact middle of the moon, the centerline of a total solar eclipse.

In this case, light coming from the middle of the sun is clearly going to be blocked by the moon, since it is directly in the way and visible light cannot penetrate rock. The most difficult light to block will be coming from the top and bottom of the sun.

To figure out whether the light will be blocked, a bit of drawing can help. If the light is coming from the exact bottom of the sun and you are wondering if a person can see the light while under the exact center of the moon, draw a line between where the light starts and the person’s eyes.

Does the moon get in the way of the line? If yes, then the person is experiencing a total solar eclipse. None of the sun’s light can get past the moon, so the sun is fully blocked.

If the answer is no, but the person is still standing under the center of the moon, then they are in an annular eclipse. The moon is in the perfect position to block all of the sun’s light, but it still fails to do so. In this case, it will appear to be a large black circle with a ring of sunlight called an annulus around it.

A partial eclipse is the most difficult to explain, since it has the most variability. All but a sliver of the sun may be blocked, or the moon can barely cover any of the sun. In general though, a partial solar eclipse happens when the moon is not quite directly between the observer and sun, but is still in the way of some sunlight.

You can use the same process for determining whether a person is experiencing a total solar eclipse to figure out if they are in the penumbral shadow of the moon. A slight complication is that the moon is off center, so it matters more where the origin point of the light is.

If the person is standing a little north of the moon’s center, then the line from origin to person should start from the sun’s southernmost point, the bottom, since the northern light is less likely to be blocked due to the moon being a bit more to the south from the person’s perspective.

If any of the sun’s light is blocked by the moon, then the person is experiencing a partial solar eclipse. The limit of this blockage, where only the slightest amount of sunlight is blocked, is the edge of the penumbra shadow.

If the moon is not blocking any light, then the moon may be close to the sun but there is no eclipse happening on that spot of Earth.

When the Earth, Moon and Sun Align

By Kevin Matyi

On Aug. 21, 2017, a total solar eclipse will cross the full continental United States along a narrow, 70-mile-wide path from Oregon to South Carolina.

The last total eclipse in the U.S. was in 1979. And the last total solar eclipse that crossed the entire continental U.S. happened in 1918. But why? Why has it been 99 years, and why have the intervening partial and even total eclipses caught only parts of the country?

In short, celestial geometry is complicated but predictable. Much like many other aspects of the cosmos, it is cyclic.


Need a minute to catch up? Go ahead. We’ll wait.  Credit: NASA

Eclipse cycles arise from a natural harmony between three motions of the moon’s orbit. We call them “months” due to their repetitive nature.

The synodic month governs the moon’s phases. It’s measured by the time it takes to go from one new moon to the next, which takes about 29 ½ days. In that time, the moon rotates once around its own axis and goes around Earth once.

From the perspective of a solar eclipse, the new moon phase is important. It’s the point in the moon’s orbit when it passes between Earth and the sun. A total solar eclipse can only happen at a new moon, and only when the other types of movement line up as well.

When the moon, on its orbit around Earth, reaches the point closest to the sun we can’t see the moon reflecting sunlight, so it appears dark. This is the new moon.
Credit: NASA/Genna Duberstein

New moons happen once a month, but we don’t see eclipses every month because the moon’s orbit is tipped by about five degrees from Earth’s orbit around the sun. On most months, the new moon casts its shadow either above or below Earth, making a solar eclipse a rare treat.

The moon’s tilted orbit meets the sun-Earth plane at two points called nodes. A draconic month is the time it takes the moon to return to the same node. The moon’s orbital nodes drift over time, which is why a single location on Earth’s surface might wait hundreds of years between total eclipses.


As the moon orbits Earth, it also wobbles up and down, making total eclipses rarer than they otherwise would be.  Credit: NASA

The moon’s path around Earth is not a perfect circle, which means the distance between us and the moon changes all the time. When the moon is closest to Earth in its orbit we call it perigee, and apogee when it’s farthest. This change in distance gives rise to the anomalistic month, the time from perigee to perigee.

The farther away the moon is from Earth, the smaller it appears. When the moon blocks all of the sun’s light, a total eclipse occurs, but when the moon is farther away — making it appear smaller from our vantage point on Earth — it blocks most, but not all of the sun. This is called an annular eclipse, which leaves a ring of the sun’s light still visible from around the moon. This alignment usually occurs every year or two, but is only visible from a small area on Earth.

When moon is too small to cover the entire sun’s disk, a ring or “annulus” of bright sunlight surrounds the moon.
Credit: NASA/Cruikshank

A total solar eclipse requires the alignment of all three cycles — the synodic, anomalistic, and draconic months. This happens every 18 years 11 days and 8 hours, a period known as a saros.

One saros period after an eclipse, the sun, moon and Earth return to approximately the same relative geometry, a near straight line, and a nearly identical eclipse will occur. The moon will have the same phase and be at the same node and the same distance from Earth. Earth will be nearly the same distance from the sun, and tilted to it in nearly the same orientation.

The extra eight hours is the reason why successive eclipses in the same saros cycle happen over different parts of Earth. Earth rotates an extra third of the way around its axis. Each total solar eclipse track looks similar to the previous one, but it’s shifted 120 degrees westward.

Earth turning on its axis impacts where total solar eclipses occur.
Credit: Espenak & Meeus

During this year’s total solar eclipse, anyone within the path of totality will be able to see one of nature’s most awe-inspiring sights. This path, where the moon will completely cover the sun and the sun’s tenuous atmosphere — the corona — can be seen, will stretch from Salem, Oregon to Charleston, South Carolina. Observers outside this path will still see a partial solar eclipse where the moon covers part of the sun’s disk. A total solar eclipse presents the rare opportunity to observe the corona and chromosphere, and eclipse observations are important for understanding why sun’s atmosphere is 1 million degrees hotter than its surface.

For more information on the eclipse, where to view it and how to view it safely (wear eye protection!), visit https://eclipse2017.nasa.gov/sun.

Make sure to wear eye protection when you go out to look at the eclipse!
Credit: NASA/Bill Ingalls

 

Heads Up, Earthlings! Watch the Skies Is Getting a Reboot.


By Kevin Matyi

Want to find out more about this year’s total solar eclipse — like what totality means and why the path of totality is so much smaller than the overall eclipse? Wonder how long it takes photons from the sun to reach Earth? Curious about dark matter and what we know about it? All are possibilities in the newly revamped Watch the Skies blog.

Hello and welcome back! We will be posting content more regularly, although it will be somewhat changed from before. You can look forward to new articles explaining different astronomy topics, breaking down complex science and jargon in a way that people can understand.

We’ll kick things off this week with some solar eclipse science. So come back then to learn more about just how wonderful and strange our universe can get!

Credit: ESO/José Francisco Salgado

Kevin Matyi is a summer intern in the Office of Communications at NASA’s Marshall Space Flight Center.

Fireball spotted northwest of Chicago, February 6, 1:25 AM CST

There was a very bright green fireball seen by hundreds of eyewitnesses surrounding Lake Michigan early this morning at 1:25:13 AM Central Time (February 6, 2017). The reports from these individuals and the video information from dash cameras and other cameras in the region indicate that the meteor originated 62 miles above West Bend, Wisconsin and moved northeast at about 38,000 miles per hour. It disrupted about 21 miles above Lake Michigan, approximately 9 miles east of the town of Newton. The explosive force of this disruption was recorded on an infrasound station in Manitoba, some 600 miles away – these data put the lower limit energy of the event at about 10 tons of TNT, which means we are dealing with a meteoroid – orbit indicates an asteroidal fragment – weighing at least 600 pounds and 2 feet in diameter. Doppler weather radar picked up fragments (meteorites) falling into Lake Michigan near the end point of the trajectory.

Ground track and Doppler radar signature (done by Marc Fries at NASA Johnson Space Center); an animation of the orbit and approach of the meteoroid is being prepared and should be available soon. We will continue to look at data as it comes in and revise the calculations if necessary.

Links to videos of this event:

Lisle, IL Police Department
https://www.youtube.com/watch?v=cF0POBcZQRk

From Highway in Wisconsin:
https://twitter.com/KrazyPhukinFoo/status/828543708299657216
https://www.youtube.com/watch?v=-AozuKJZK_4

Chillicothe IL Police Department:
https://twitter.com/chillipd?ref_src=twsrc%5Etfw

Morton Grove Police Squad
https://twitter.com/NWSChicago/status/828532116300394496

Roof of Atmospheric, Oceanic & Space Sciences Building – University of Wisconsin https://www.youtube.com/watch?v=LHubXCtdEbo

EarthCams:

Looking over Lake Michigan, from Michigan Coast: (looking too north to see the meteor itself) http://www.earthcam.com/usa/michigan/grandhaven/lakemichigan/?cam=lakemichigan
Bright flash at 2:25:13

NASA’s Marshall Center Celebrates International Observe the Moon Night

On Saturday, Oct. 8, from 5:30 to 9 p.m. the public and media are invited to attend the 6th annual International Observe the Moon Night celebration, hosted by NASA’s Marshall Space Flight Center at the Davidson Center for Space Exploration at the U.S. Space & Rocket Center, both in Huntsville, Alabama.

The free event will include moon-related and solar system exhibits and hands-on activities for children and adults. Activities will include an out-of-this-world photo booth, airbrush tattoo station, and a meet and greet with Janet Ivey from “Janet’s Planet” on PBS. Live music will be provided by DJ Shell. Several large amateur telescopes will be set up to view the moon, stars, and other visible planets. Visitors can also take a virtual 3-D trip to the moon with the astronomy van, offering a magnified, command-module-like view of the lunar surface. The family movie, “Home,” will begin at dusk.

A panel discussion titled: “Planets, Moons & Meteorites Oh My!” will begin at 7:15 p.m. in the National Geographic Theater and will feature Marshall speakers Mitzi Adams, solar physicist; Dr. Barbara Cohen, planetary sceintist; Dr. Bill Cooke, manager of the Meteoroid Environments Office; and Dr. Renee Weber, planetary scientist.

The U.S. Space & Rocket Center is the official visitor center for NASA’s Marshall Space Flight Center.

For more information on NASA’s Marshall Space Flight Center, visit https://www.nasa.gov/centers/marshall/home/index.html.

For more information on the U.S. Space & Rocket Center, visit http://rocketcenter.com.

Full Moon Photographed From Apollo 11 Spacecraft
Full Moon Photographed From Apollo 11 Spacecraft