Eta Aquariids Outburst This Weekend – Next One in 2046

The eta Aquariid meteor shower should put on a spectacular sky show this year with meteor rates up to one per minute! The typical peak viewing time would normally be the night of May 4 into the morning of May 5. However, due to the outburst, May 2-6 could provide excellent skygazing opportunities.

According to Bill Cooke, who leads the Meteoroid Environment Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, many of the shooting stars we see this year are actually caused by material from Halley’s Comet that is around 3,000 years old. As Earth runs into that debris, we can see streaks of light across the sky. When our planet moves through concentrated clumps of material, we can get a meteor outburst. The next time the eta Aquariids will outburst is about 20 years from now.

A sky full of falling meteors.
Grains of cosmic dust streaked through night skies in early May 2023. Swept up as planet Earth plowed through the debris streams left behind by periodic Comet Halley, the annual meteor shower is known as the Eta Aquarids. Credit: Petr Horalek / Institute of Physics in Opava

Explanation: Grains of cosmic dust streaked through night skies in early May. Swept up as planet Earth plowed through the debris streams left behind by periodic Comet Halley, the annual meteor shower is known as the eta Aquariids. In 2022, the eta Aquariids peak was visually hampered by May’s bright full Moon. But early morning hours surrounding last May’s shower of Halley dust were free of moonlight interference. In exposures recorded between April 28 and May 8 in 2022, this composited image shows nearly 90 eta Aquariid meteors streaking from the shower’s radiant in Aquarius over San Pedro de Atacama, Chile.

To really top off this year’s event, the new Moon aligns with the peak nights, therefore there will be no light interference to obscure the fainter meteors. There’s only one catch with this shower in particular – the best viewing time is from 4 a.m. to dawn. You will be able to see the glowing in the early evening, as the constellation Aquarius does not rise until around 4 a.m. local time. Set the alarm, grab the coffee, and settle in for what should be a magnificent meteor shower experience.

By Lauren Perkins
NASA’s Marshall Space Flight Center

Gorgeously Green: Geminids Peak Next Week

The Geminid meteor shower is active for much of December, but the peak occurs the night of the 13th into the morning of the 14th. Meteor rates in rural areas can be upwards of one per minute this year with minimal moonlight to interfere.

Bill Cooke, lead for the Meteoroid Environment Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, shares why the Geminids particularly excite him: “Most meteors appear to be colorless or white, however the Geminids appear with a greenish hue. They’re pretty meteors!”

Northern Lights, or aurora borealis, haunted skies over the island of Kvaløya, near Tromsø Norway on December 13. This 30 second long exposure records their shimmering glow gently lighting the wintery coastal scene. A study in contrasts, it also captures the sudden flash of a fireball meteor from December’s excellent Geminid meteor shower. Streaking past familiar stars in the handle of the Big Dipper, the trail points back toward the constellation Gemini, off the top of the view. Both aurora and meteors occur in Earth’s upper atmosphere at altitudes of 100 kilometers or so, but aurora are caused by energetic charged particles from the magnetosphere, while meteors are trails of cosmic dust.
Credit & Copyright: Bjørnar G. Hansen

Depending on the meteor’s chemical composition, the meteor will emit different colors when burned in the Earth’s atmosphere. Oxygen, magnesium, and nickel usually produce green.

As with all meteor showers, all you need is a clear sky, darkness, a bit of patience, and perhaps warm outer wear and blankets for this one. You don’t need to look in any particular direction; meteors can generally be seen all over the sky.

By Lauren Perkins
NASA’s Marshall Space Flight Center

The eta Aquariid Meteor Shower Outburst to Peak the Night of May 4-5

A meteor streaks across the sky in a gif with trees in the foreground.
Credit: AMS Elizabeth Warner

The eta Aquariid meteor shower is active throughout April and May, peaking in the pre-dawn hours of May 5. This year could be particularly impressive as an outburst year with 120-160 meteors per hour expected.

“A meteor shower is like a normal rain shower, with 50-60 meteors per hour,” said Bill Cooke, lead of NASA’s Meteoroid Environments Office at the agency’s Marshall Space Flight Center in Huntsville, Alabama. “An outburst is like a thunderstorm, with greater than normal meteor activity expected. A meteor storm is like a tornado, where meteor rates are over one thousand per hour.”

Despite the full moon lighting up the sky and washing out the faint meteors, this year’s eta Aquariid meteor shower is not one to miss. In terms of producing fireballs, NASA camera data places it #6 among meteor showers. These bright fireballs are caused by Earth running into a dense stream of debris from Comet Halley, a lot of which was ejected more than 3,000 years ago. Moving at 148,000 mph, some of these fireballs leave glowing “trains” in their wake that last for several seconds to minutes.

C-141 Kuiper Airborne Imagery of Comet Halley (New Zealand Expedition) PHOTO CREDIT Photo taken with equipment designed, mounted on the headring and operated by the Charleston (South Carolina) County School District CAN DO Project;

How to View
The eta Aquariid meteor shower is viewable in both the Northern and Southern hemispheres, with higher rates of visibility to observers in the Southern Hemisphere. This is due to the radiant’s location in the constellation of Aquarius. Meteors will be observable after midnight, but the peak times are 3-4 a.m. until dawn.

Regardless of your geographic location, you’ll want to find an area well away from city lights for best viewing. Give yourself about 30 minutes in the dark for your eyes to adapt – this means not looking at your phone. Look AWAY from the moon and take in as much sky as possible.

An image of an Eta Aquarid meteor from the NASA All Sky Fireball Network station in Tullahoma, Tennessee in May, 2013.

The next major meteor showers will be the Perseids in August, and the sister show to the eta Aquariids, the Orionids in October.

But there’s plenty more skygazing to do this month. Check out What’s Up in May from NASA Jet Propulsion Laboratory.

By Lauren Perkins 

Heads Up! Lyrid Meteor Shower Peaks April 22-23

This year’s Lyrid meteor shower will peak in the predawn hours of April 23. On average, the shower can produce up to 15 meteors per hour under ideal viewing conditions. The Lyrids occur every year in mid-April, when Earth crosses the trail of debris left by the Comet C/1861 G1 Thatcher. These bits of comet burn up when they hit Earth’s atmosphere and produce this shower of shooting stars. The shower gets its name from the constellation Lyra, the point in the sky where the meteors appear to originate. Unlike the Perseids or Geminids, the Lyrids are not known for bright fireballs. What makes them special is their unpredictability.

Lyrid Meteors from the Constellation Lyra – Image Credit & Copyright: Petr Horálek

The first record of the Lyrid meteor shower dates back 2,700 years, making it one of the oldest in history. Researchers looking though old records have found descriptions of major Lyrid outbursts. For example, a notation made by the French bishop Gregory of Tours in April of 582 A.D. states, “At Soissons, we see the sky on fire.” There was also a Lyrid outburst visible over the United States in 1803. An article in the Virginia Gazette and General Advertiser describes the shower: “From one until three, those starry meteors seemed to fall from every point in the heavens, in such numbers as to resemble a shower of sky rockets.” The last Lyrid outburst was in 1982, when 75 meteors per hour were recorded by observers in Florida.

The common theme here is that Lyrid outbursts are surprises. Unlike some other showers, meteor researchers aren’t able to predict Lyrid outbursts as well. That’s why it is important to make observations each year so that models of its activity can be improved.

How can you best observe the Lyrids? After 10:30 p.m. local time on the night of April 22, find a dark place away from city lights with open sky free of clouds and look straight up. It will take about 30 minutes for your eyes to get acclimated to the dark. Don’t look at your cell phone – the bright light from its screen will interrupt your night vision. You will begin to see Lyrids, and as the night progresses the meteors will appear more often, reaching 10 to 15 per hour in the pre-dawn hours of the 23rd. You can see Lyrids on the night before and after the peak, but the rates will be lower, maybe five per hour or so.

For more on meteors, visit the NASA Meteor Watch Facebook page.

The 2022 Geminids Meteor Shower Is Approaching

The cosmos’ annual gift to sky watchers, the Geminids Meteor shower, will peak on Dec. 13-14 this year.

During peak activity and perfect weather conditions, which are rare, the Geminids produce approximately 100-150 meteors per hour for viewing. However, this year a waning gibbous moon will make it harder to view most of the shower, resulting in only 30-40 visible meteors per hour at the peak in the Northern Hemisphere, depending on sky conditions. But the Geminids are so bright that this should still be a good show.

Bill Cooke, lead of NASA’s Meteoroid Environments Office at Marshall Space Flight Center in Huntsville, Alabama, suggests sitting in the shade of a house or tree while also maintaining a view of the open sky to alleviate moonlight interference.

The meteor shower is coined the Geminids because the meteors appear to radiate from the constellation Gemini. According to Cooke, meteors close to the radiant have very short trails and are easily missed, so observers should avoid looking at that constellation. However, tracing a meteor backwards to the constellation Gemini can determine if you caught a Geminid (other weaker showers occur at the same time).

Gemini does not appear very high above the horizon in the Southern Hemisphere, resulting in viewers only seeing approximately 25% of the rates seen in the Northern Hemisphere, which is between 7-10 meteors per hour. Sky watchers from the Southern Hemisphere are encouraged to find areas with minimal light pollution and look to the northern sky to improve their viewing opportunities.

A black circle has a series of white streaks which represent the geminid meteor shower.
Over 100 meteors are recorded in this composite image taken during the peak of the Geminid meteor shower in 2014. Credit: Jacobs Space Exploration Group/ESSCA

The Geminids start around 9 or 10 p.m. CST on Dec. 13, making it a great viewing opportunity for any viewers who cannot be awake during later hours of the night. The shower will peak at 6 a.m. CST on Dec. 14, but the best rates will be seen earlier around 2 a.m. local time. You can still view Geminids just before or after this date, but the last opportunity is on Dec. 17 – when a dedicated observer could possibly spot one or two on that night.

For prime viewing, find an area away from city and streetlights, bundle up for winter weather conditions, bring a blanket or sleeping bag for extra comfort, lie flat on your back with your feet facing south, and look up. Practice patience because it will take approximately 30 minutes for your eyes to fully adjust and see the meteors. Refrain from looking at your cell phone or other bright objects to keep your eyes adjusted.

The show will last for most of the night, so you have multiple opportunities to spot the brilliant streaks of light across our sky.

So where does this magnificent shower come from? Meteors are fragments and particles that burn up as they enter Earth’s atmosphere at high speed, and they usually originate from comets.

The Geminid shower originates from the debris of 3200 Phaethon  an asteroid first discovered on Oct. 11, 1983, using the Infrared Astronomical Satellite. Phaethon orbits the Sun every 1.4 years, and every year Earth passes through its trail of debris, resulting in the Geminids Shower.

Phaethon is the first asteroid to be associated with a meteor shower, but astronomers debate its exact classification and origins. Phaethon lacks an icy shell (the staple characteristic of a comet), but some consider it a “dead comet” – suggesting it once had an icy shell that melted away. Other astronomers call it a “rock comet” because Phaethon passes very close to the Sun during its orbit, which theoretically results in heating and cracking that creates debris and dust. The bottom line is Phaethon’s exact origins are still a mystery, but we do know it’s the Geminids parent body.

Geminids travel 78,000 miles per hour, over 40 times faster than a speeding bullet, but it is highly unlikely that meteors will reach the ground – most Geminids burn up at altitudes between 45 to 55 miles.

An info graphic showing the altitude of the geminids based on 2019’s meteor camera data for the Geminids.
An info graphic based on 2019’s meteor camera data for the Geminids. Credit: NASA

In addition to sky watching opportunities, meteor videos recorded by the NASA All Sky Fireball Network are available each morning to identify Geminids in these videos – just look for events labeled “GEM.”

And, if you want to know what else is in the sky for December, check out the video below from Jet Propulsion Laboratory’s monthly “What’s Up” video series:

Happy stargazing!

by Lane Figueroa

New meteor shower? How many meteors will I see, really?

Astronomers are excited about the possibility of a new meteor shower May 30-31. And that excitement has sparked a lot of information about the tau Herculids. Some has been accurate, and some has not.

We get excited about meteor showers, too! But sometimes events like this don’t live up to expectations – it happened with the 2019 Alpha Monocerotid shower, for example. And some astronomers predict a dazzling display of tau Herculids could be “hit or miss.”

This infrared image from NASA's Spitzer Space Telescope shows the broken Comet 73P/Schwassman-Wachmann 3.
This infrared image from NASA’s Spitzer Space Telescope shows the broken Comet 73P/Schwassman-Wachmann 3 skimming along a trail of debris left during its multiple trips around the sun. The flame-like objects are the comet’s fragments and their tails, while the dusty comet trail is the line bridging the fragments. (Credit: NASA)

So, we’re encouraging eager skywatchers to channel their inner scientists, and look beyond the headlines. Here are the facts:

  • On the night of May 30 into the early morning of May 31, Earth will pass through the debris trails of a broken comet called 73P/Schwassmann-Wachmann, or SW3.
  • The comet, which broke into large fragments back in 1995, won’t reach this point in its orbit until August.
  • If the fragments from were ejected with speeds greater than twice the normal speeds—fast enough to reach Earth—we might get a meteor shower.
  • Spitzer observations published in 2009 indicate that at least some fragments are moving fast enough. This is one reason why astronomers are excited.
  • If a meteor shower does occur, the tau Herculids move slowly by meteor standards – they will be faint.

Observers in North America under clear, dark skies have the best chance of seeing a tau Herculid shower. The peak time to watch is around 1am on the East Coast or 10pm on the West Coast.

We can’t be certain what we’ll see. We can only hope it’s spectacular.

The Geminids: Best Meteor Shower of the Year!

by Lance D. Davis

The Geminids are widely recognized as the best annual meteor shower a stargazer can see, occurring between Dec. 4 to Dec. 17. We will broadcast a live stream of the shower’s peak Dec. 14-15 (changed dates from 13-14 due to weather) from a meteor camera at NASA’s Marshall Space Flight Center in Huntsville, Alabama, (if our weather cooperates!) from 8 p.m. to 4 a.m. CST on the NASA Meteor Watch Facebook page.

The parent of the Geminids is 3200 Phaethon, which is arguably considered to be either an asteroid or an extinct comet. When the Earth passes through trails of dust, or meteoroids, left by 3200 Phaethon, that dust burns up in Earth’s atmosphere, creating the Geminid meteor shower.

The Geminid rate will be even better this year, as the shower’s peak overlaps with a nearly new moon, so there will be darker skies and no moonlight to wash out the fainter meteors. That peak will happen on the night of Dec. 13 into the morning of Dec. 14, with some meteor activity visible in the days before and after. Viewing is good all night for the Northern Hemisphere, with activity peaking around 2:00 a.m. local time, and after midnight for viewers in the Southern Hemisphere.

Why are they called the Geminids?

All meteors associated with a shower have similar orbits, and they all appear to come from the same place in the sky, which is called the radiant. The Geminids appear to radiate from a point in the constellation Gemini, hence the name “Geminids.”

How fast are Geminids?

Geminids travel 78,000 mph (35 km/s). This is over 1000 times faster than a cheetah, about 250 times faster than the swiftest car in the world, and over 40 times faster than a speeding bullet!

2019’s meteor camera data for the Geminids.
An info graphic based on 2019’s meteor camera data for the Geminids. Credit: NASA

How to observe the Geminids?

If it’s not cloudy, get away from bright lights, lie on your back, and look up. Remember to let your eyes get adjusted to the dark – you’ll see more meteors that way. Keep in mind, this adjustment can take approximately 30 minutes. Don’t look at your cell phone screen, as it will ruin your night vision!

Meteors can generally be seen all over the sky. Avoid watching the radiant because meteors close to it have very short trails and are easily missed. When you see a meteor, try to trace it backwards. If you end up in the constellation Gemini, there’s a good chance you’ve seen a Geminid.

When is the best time to observe Geminids?

The best night to see the shower is Dec. 13/14. The shower will peak around 01:00 UTC (Coordinated Universal Time). Sky watchers in the Northern Hemisphere can see Geminids starting around 7:30 – 8:00 p.m. local time on Dec. 13, with rate of meteors increasing as 2 a.m. approaches. In the Southern hemisphere, good rates will be seen between midnight and dawn local time on Dec. 14. Geminid watchers who observe from midnight to 4 a.m. should catch the most meteors.

How many Geminids can observers expect to see Dec. 13/14?

Realistically, the predicated rate for observers in the northern hemisphere is closer to 60 meteors per hour. This means you can expect to see an average of one Geminid per minute in dark skies at the shower peak. Observers in the southern hemisphere will see fewer Geminids than their northern hemisphere counterparts – perhaps 25% of rates in the northern hemisphere, depending on their latitude.

Where will NASA stream the Geminids meteor shower?

We will broadcast a live stream of the shower’s peak Dec. 13-14 from a meteor camera at NASA’s Marshall Space Flight Center in Huntsville, Alabama, (if our weather cooperates!) from 8 p.m. to 4 a.m. CST on the NASA Meteor Watch Facebook page.

Meteor videos recorded by the All Sky Fireball Network are also available each morning to identify Geminids in these videos – just look for events labeled “GEM.”

Happy viewing stargazers!

Perseids Peak: Watch Best Meteor Shower of the Year!

By Emily Clay

The Perseid meteor shower is here! With Comet NEOWISE making its way out of the solar system, it is time for a celestial show caused by a different comet. Perseid meteors, caused by debris left behind by the Comet Swift-Tuttle, began streaking across the skies in late July and will peak in the pre-dawn hours of Aug. 12.

In this 30 second exposure, a meteor streaks across the sky during the annual Perseid meteor shower Friday, Aug. 12, 2016 in Spruce Knob, West Virginia. The Perseids show up every year in August when Earth ventures through trails of debris left behind by an ancient comet. Image
In this 30 second exposure, a meteor streaks across the sky during the annual Perseid meteor shower Friday, Aug. 12, 2016 in Spruce Knob, West Virginia. The Perseids show up every year in August when Earth ventures through trails of debris left behind by an ancient comet. Image Credit: NASA/Bill Ingalls

The Perseid meteor shower is often considered to be one of the best meteor showers of the year due to its high rates and pleasant late-summer temperatures. This year’s shower, however, has the unfortunate circumstance of the Moon phase—last quarter—impeding the view of the shower peak, reducing the visible meteors from over 60 per hour down to 15-20 per hour. But the Perseids are rich in bright meteors and fireballs, so it will still be worth going out in the early morning to catch some of nature’s fireworks.

WHEN SHOULD I LOOK?

Make plans to stay up late the night of Aug. 11 or wake up early the morning of Aug. 12. The Perseids are best seen between about 2 a.m. your local time and dawn. The Moon rises at around midnight, so its brightness will affect the peak viewing window. However, even though the Moon’s phase and presence will keep the frequency of visible meteors lower, there is still nearly one meteor every two minutes during the peak!

If those hours seem daunting, not to worry! You can go out after dark, around 9 p.m. local time, and see a few Perseids. Just know that you won’t see nearly as many as you would had you gone out during the early morning hours.

How can you see the Perseids if the weather doesn’t cooperate where you are? A live broadcast of the meteor shower from a camera at NASA’s Marshall Space Flight Center in Huntsville, Alabama, (if our weather cooperates!) will be available on the NASA Meteor Watch Facebook starting around 8 p.m. CDT on Aug. 11 and continuing until sunrise on Aug. 12. Meteor videos recorded by the NASA All Sky Fireball Network are also available each morning; to identify Perseids in these videos, look for events labeled “PER.”

WHY ARE THEY CALLED PERSEIDS?

All meteors associated with one particular shower have similar orbits, and they all appear to come from the same place in the sky, called the radiant. Meteor showers take their name from the location of the radiant. The Perseid radiant is in the constellation Perseus. Similarly, the Geminid meteor shower, observed each December, is named for a radiant in the constellation Gemini.

HOW TO OBSERVE PERSEIDS

If it’s not cloudy, pick an observing spot away from bright lights, lay on your back, and look up! You don’t need any special equipment to view the Perseids – just your eyes.  (Note that telescopes or binoculars are not recommended because of their small fields of view.) Meteors can generally be seen all over the sky so don’t worry about looking in any particular direction.

While observing this month, not all of the meteors you’ll see belong to the Perseid meteor shower. Some are sporadic background meteors. And some are from other weaker showers also active right now, including the Alpha Capricornids, the Southern Delta Aquariids, and the Kappa Cygnids. How can you tell if you’ve seen a Perseid? If you see a meteor try to trace it backwards. If you end up in the constellation Perseus, there’s a good chance you’ve seen a Perseid. If finding constellations isn’t your forte, then note that Perseids are some of the fastest meteors you’ll see!

Pro tip:  Remember to let your eyes become adjusted to the dark (it takes about 30 minutes) – you’ll see more meteors that way. Try to stay off of your phone too, as looking at devices with bright screens will negatively affect your night vision and hence reduce the number of meteors you see!

Happy viewing!

Go Outside and See the Geminids!

With the holidays right around the corner, most of us are in gift-giving mode… and one of our favorite gifts every December is the Geminid meteor shower!

This year, the peak is during the overnight hours of December 13 and into the morning of December 14. If you can’t catch the Geminids on Friday night, no worries — viewing should still be good on the night of December 14 into the early morning hours of the 15th.

The Geminids are pieces of debris from an asteroid called 3200 Phaethon. Earth runs into Phaethon’s debris stream every year in mid-December, causing meteors to fly from the direction of the constellation Gemini – hence the name “Geminids.”

Under dark, clear skies, the Geminids can produce up to 120 meteors per hour. But this year, a bright, nearly full moon will hinder observations of the shower. Observers can hope to see up to 30 meteors per hour.

Meteor
A Geminid streaks across the sky in this photo from December 2019. Image Credit: NASA

HOW CAN YOU SEE THE GEMINIDS?

Weather permitting, the Geminids can best be viewed from around midnight to 4 a.m. local time. The best time to see them is around 2 a.m. your local time on December 14. This time is when the Geminid radiant is highest in your night sky. The radiant is the celestial point in the sky from which the paths of meteors appear to originate.

The higher the radiant rises into the sky, the more meteors you are likely to see.

Find the darkest place you can and give your eyes about 30 minutes to adapt to the dark. Avoid looking at your cell phone, as it will disrupt your night vision. Lie flat on your back and look straight up, taking in as much sky as possible. You should soon start to see Geminid meteors!

As the night progresses, the Geminid rate will increase. If you see a meteor, try to trace it backwards. If you end up in the constellation Gemini, there is a good chance you’ve seen a Geminid. The Geminids are best observed in the Northern Hemisphere, but no matter where you are in the world (except Antarctica), some Geminids will be visible.

Good luck and happy viewing!

Get Ready Stargazers: The Geminids Are Coming!

The second week of December heralds the beginning of the strongest meteor shower of the year – the Geminids. It’s a good time to bundle up, go outside and watch one of Mother Nature’s best sky shows!

The Geminids are active every December, when Earth passes through a massive trail of dusty debris shed by a weird, rocky object named 3200 Phaethon. The dust and grit burn up when they run into Earth’s atmosphere in a flurry of “shooting stars.”

Phaethon’s nature is debated. It’s either a near-Earth asteroid or an extinct comet, sometimes called a rock comet. There is another object – an Apollo asteroid named 2005 UD – that is in a dynamically similar orbit to Phaethon, prompting speculation that the two were once part of a larger body that split apart or collided with another asteroid.

Most shower meteors are shed by comets when their orbits take them into the inner Solar System, but the Geminids may be the debris from this long-ago breakup or collision event. When you consider that the Geminid meteor stream has more mass than any other meteor shower, including the Perseids, whatever happened back then must have been pretty spectacular.

So what do potential Geminid watchers need to do this year?

It’s pretty simple, actually. The nearly First Quarter Moon sets around 10:30 p.m. local time, so wait until then to go out – the light from the Moon washes out the fainter meteors, which are more numerous. Find the darkest place you can, and give your eyes about 30 minutes to adapt to the dark. Avoid looking at your cell phone, as it will mess up your night vision. Lie flat on your back and look straight up, taking in as much sky as possible. You will soon start to see Geminid meteors. As the night progresses, the Geminid rate will increase, hitting a theoretical maximum of about 100 per hour around 2 a.m.

Bear in mind, this rate is for a perfect observer under perfect skies with Gemini straight overhead. The actual number for folks out in the dark countryside will be slightly more than 1 per minute. Folks in suburbs will see fewer, 30 to 40 per hour depending on the lighting conditions. And those downtown in major cities will see practically nothing – even though the Geminids are rich in beautiful green fireballs, the lights of New York, San Francisco, or Atlanta will blot even them out. Dark clear skies are the most important ingredient in observing meteor showers.

Comet Wirtanen has a light blue hue in this image taken by NASA astronomer Bill Cooke using an iTelescope widefield 90 mm refractor and color CCD camera Nov. 29 at Siding Spring Observatory in Australia.

And while you’re scanning the sky for Geminids, you might notice a small, faint “ghostly” green patch in the constellation of Taurus – that’s Comet 46P/Wirtanen, which will be making its closest approach to Earth (7 million miles) for the next 20 years. We are actually going to have a comet visible to the unaided eye this holiday season!

Graphic showing the locations of the Geminid radiant and Comet 46P/Wirtanen for 35 degrees north latitude at 10:30 p.m. on the night of the Geminid peak (December 13).

Comets are notoriously unpredictable beasts, but if Wirtanen continues to follow its current brightening trend, it may reach a peak magnitude of around +3 (about as bright as a star in the handle of the Little Dipper) a couple of days past the Geminid peak, on December 16. Binoculars or a small telescope are good for taking a peak at Wirtanen, so bring them along for your night of Geminid watching. A green comet to complement the green fireballs!