Asteroid 2011 MD Whizzes by Earth

Discovered only a few days ago, the house-sized asteroid 2011 MD whizzed by at only 7,600 miles above Earth’s surface on June 27 at approximately 1:00 p.m. EDT. This approximately 10-yard rock came closer than many communications satellites and will rapidly recede over the next few hours and days. Rob Suggs, operating a Marshall Space Flight Center telescope in New Mexico, captured several images of the asteroid on the night of  June 26.

At the time these 30-second exposures were made, the asteroid was about 80,000 miles away from Earth. At such a close distance, the asteroid appears as a streak due to its motion relative to us, even in a short exposure.

 

Image courtesy of Rob Suggs, NASA’s Meteoroid Environment Office, Marshall Space Flight Center, Huntsville, Ala.

 

Spring is Fireball Season!


What are the signs of spring? They are as familiar as a blooming daffodil, a songbird at dawn, a surprising shaft of warmth from the afternoon sun. And, oh yes, don’t forget the meteors.

“Spring is fireball season,” says Bill Cooke of NASA’s Meteoroid Environment Center. “For reasons we don’t fully understand, the rate of bright meteors climbs during the weeks around the vernal equinox.”

In other seasons, a person willing to watch the sky from dusk to dawn could expect to see around 10 random or “sporadic” fireballs. A fireball is a meteor brighter than the planet Venus. Earth is bombarded by them as our planet plows through the jetsam and flotsam of space–i.e., fragments of broken asteroids and decaying comets that litter the inner solar system.

In spring, fireballs are more abundant. Their nightly rate mysteriously climbs 10% to 30%.

“We’ve known about this phenomenon for more than 30 years,” says Cooke. “It’s not only fireballs that are affected. Meteorite falls–space rocks that actually hit the ground–are more common in spring as well1.”

Researchers who study Earth’s meteoroid environment have never come up with a satisfactory explanation for the extra fireballs. In fact, the more they think about it, the stranger it gets…

Read the Science@NASA article here:
http://science.nasa.gov/science-news/science-at-nasa/2011/31mar_springfireballs/

The Great Fireball Network

Watching the skies is much more than a hobby with the Marshall Center’s Bill Cooke, lead of the Meteoroid Environment office — it’s an obsession.

Each morning when Cooke logs on to his computer, he quickly checks email for the daily update from the fireball camera network. Groups of smart cameras in Cooke’s new Fireball network triangulate the fireballs’ paths, and generate the report that appears in his email each morning.

Cooke’s network of cameras is currently made up of three cameras; however he is looking to add 12 additional cameras, and he’s actively seeking schools, science centers and planetariums to host his cameras. The cameras will need to be deployed in clusters of five. One group will be spread over the southeast United States; another in the Ohio and Kentucky area; and another along the Atlantic coast in the northeast. The hope is that at least one of the three regions will have clear skies at any given time.

The following criteria must be met for a location to be considered as a camera site:

  • Location east of the Mississippi River
  • Clear horizon — few trees
  • Few bright lights — none close to camera
  • Fast internet connection

Stay tuned for details on what the fireball network reports!

Live Web Chats Today: Geminid Meteor Shower


Baby, it’s cold outside — but you can still enjoy the best meteor shower of the year. The 2010 Geminid meteor shower promises to be lively, with realistic viewing rates of 50-80 meteors per hour and potential peaks reaching 120 meteors per hour. Anytime between Dec. 12-16 is a valid window for Geminid-watching, but the night of Dec. 13-14 is the anticipated peak.

You have two opportunities to learn more about the Geminids from meteor experts based at NASA’s Marshall Space Flight Center. On Monday, Dec. 13 from 3:00 to 4:00 p.m. EST, meteor experts Danielle Moser and Rhiannon Blaauw will answer your questions, then you can stay “up all night” to observe the Geminids with NASA astronomer Bill Cooke. Have the coffee ready, then join them online from 11:00 p.m. to 5:00 a.m. EST as the Geminids peak in the skies over Earth.

Joining the chats is easy. Simply go to https://www.nasa.gov/connect/chat/geminids2010.html a few minutes before each of the chat start times list above. The chat module will appear at the bottom of this page. After you log in, wait for the chat module to be activated, then ask your questions. Here’s to a spectacular viewing!

False-color composite view of 2008 Geminid meteor shower is courtesy of Bill Cooke, NASA’s Meteoroid Environment Office at the Marshall Space Flight Center.
 

Only 11.5 Million Miles Away Now!


MSFC astronomer Bill Cooke took this five-minute exposure of Comet Hartley 2 late on the night of Saturday, Oct. 16, 2010, using a 10″ telescope in New Mexico.


The comet, which has now reached naked eye visibility, was just under 11.5 million miles from Earth and sporting a coma over a degree across — twice the size of the full moon. You can read more about the “coma” and other parts of a comet at the NASA Worldbook: Comets page.

This very active visitor to our neighborhood makes its closest approach around 8 a.m. EDT on  Oct. 20, at a distance of 11.2 million miles. Unfortunately, the light from the nearly full moon will tend to wash out the comet’s pale green glow, so comet watchers are advised to make use of a pair of binoculars for the best view.

Image courtesy of Bill Cooke, NASA’s Meteoroid Environment Office, Marshall Space Flight Center, Huntsville, Ala.

Camel Leopards and Comets


Camelopardalis.

It’s a strange-sounding name for a constellation, coming from the Greco-Roman word for giraffe, or “camel leopard”. The October Camelopardalids are a collection of faint stars that have no mythology associated with them — in fact, they didn’t begin to appear on star charts until the 17th century.

Even experienced amateur astronomers are hard-pressed to find the constellation in the night sky. But in early October, it comes to prominence in the minds of meteor scientists as they wrestle with the mystery of this shower of meteors, which appears to radiate from the giraffe’s innards.

The October Camelopardalids are not terribly spectacular, with only a handful of bright meteors seen on the night of Oct. 5. It may have been first noticed back in 1902, but definite confirmation had to wait until Oct. 2005, when meteor cameras videotaped 12 meteors belonging to the shower. Moving at a speed of 105,000 miles per hour, Camelopardalids ablate, or burn up, somewhere around 61 miles altitude, according to observations from the NASA allsky meteor cameras on the night of Oct. 5, 2010.


So they aren’t spectacular. Their speed is calculated. Their “burn up” altitudes and orbits are known. So what’s the mystery?

Camelopardalids have orbits, which indicates that they come from a long period comet, like Halley’s Comet. But the Camelopardalids don’t come from Halley, nor from any of the other comets that have been discovered. Hence the mystery: somewhere out there is — or was — a comet that passes close to Earth which has eluded detection. These tiny, millimeter size bits of ice leaving pale streaks of light in the heavens are our only clues about a comet of a mile, maybe more, in diameter.

This is why astronomers keep looking at the Camelopardalids meteors. They hope that measuring more orbits may eventually help determine the orbit of the comet, enabling us to finally locate and track this shadowy visitor to Earth’s neighborhood.

Here Comes Comet Hartley 2!


A pale green interloper among the stars of Cassiopeia, Comet Hartley 2 shines in this four-minute exposure taken on the night of Sept. 28, 2010, by NASA astronomer Bill Cooke:


Still too faint to be seen with the unaided eye, the comet was 18 million miles away from Earth at the time. Cooke took this image using a telescope located near Mayhill, N.M., which he controlled via the Internet from his home computer in Huntsville, Ala.

Comet-watching from the comfort of your living room! Modern astronomy is truly amazing… 

More About Comet 103P/Hartley 2

Comet 103P/Hartley 2, a small periodic comet, was discovered in 1986 by Malcolm Hartley, an Australian astronomer. It orbits the sun about every 6.5 years, and on Oct. 20, the comet will make its closest approach to Earth since its discovery. In this case, “close” means 11 million miles, or 17.7 million kilometers. A moonless sky will make for promising viewing conditions in the northeastern skies, especially just before dawn.

Comet Hartley 2’s nuclear diameter is estimated at 0.75-0.99 of one mile — 1.2-1.6 kilometers — and it’s believed to have enough mass to make approximately 100 more apparitions, or appearances, near Earth. The 2010 appearance also marks one of the closest approaches of any comet in the last few centuries.


Images courtesy of Bill Cooke, NASA’s Meteoroid Environment Office, Marshall Space Flight Center, Huntsville, Ala.

When to look? In what direction?

Lots of questions coming in, so I thought I would deal with them here.

I live in xxx… Can I see Perseids?

Check out the map below. Unless you live in the red shaded area, you will be able to see the shower. EVERYONE in the United States and Europe with clear weather will be able to see it, provided they are away from city lights and have clear, dark skies. Most other parts of the world will be able to see the shower as well.

When do I look?

You should start to see Perseids around 10 PM local time. The rate will increase throughout the night until just before dawn (3 to 4 am), when you may be able to see as many as 80-100 per hour. Be sure to allow about 45 minutes to allow your eyes to dark adapt.

Where do I look?

Lie on your back on a sleeping bag, blanket, or lawn chair and look straight up and take in as much sky as possible. Do not look at the constellation Perseus, where is the shower radiant is located, as you will see fewer meteors. This is because the length of the meteor gets longer the farther it appears from the radiant; to see nice bright meteors, you need to look some distance away from Perseus, which for U.S. observers is off to the northeast. Looking straight up, towards the Zenith, is a good choice and enables you to take in a lot of sky.

Do not use binoculars or a telescope, as they have narrow fields of view and will greatly reduce your chances of seeing meteors.

Hope this helps and wish everyone lots of meteors!

Will the Perseid shower be visible from {insert your location}?


I am asked this question over and over again, and it’s a good one. Everyone knows that you have to be in the right place to observe solar eclipses and other astronomical goings-on, so why should meteor showers be any different?

You do have to be in the right part of the planet to view meteor outbursts or storms, because the trails of comet debris are so narrow (hundreds of thousands of miles) that it only takes a few hours for the Earth to pass through the stream. A few hours is not enough time for the Earth to do a complete rotation (which takes 24 hours), so only those people located in areas where it is night and where the radiant is visible will be able to see the outburst or storm. These dramatic events require the viewers to be in the right ranges of both latitude AND longitude.

This is not true for normal meteor showers, like this year’s Perseids. The main stream of particles extends for millions of miles along Earth’s orbit, requiring days for it to cross. All we need is one day to take the longitude out of the visibility calculations, because then the entire planet will experience night while the shower is still going on. That’s the good news.

The kicker is that we not only have to have darkness, but also the radiant — in this case, located in the constellation of Perseus — has to be visible, i.e. above the horizon. The elevation of the radiant depends in part on latitude of the observer, and one can derive — or look up, in this age of Google — a relatively simple equation that gives the maximum elevation of the radiant:

maximum elevation = 90 – |dec -lat|

where dec is the declination of the radiant and lat is latitude of the observer (all in degrees). The vertical lines before dec and after lat mean to take the absolute value of dec — lat.  In order to see meteors from the shower, the maximum elevation must be 0 or greater (preferably more than 15 degrees). In the case of the Perseids, dec = 58 deg, so it is easy to calculate the maximum elevation for various latitudes:

 

We see that everyone in the northern hemisphere has a shot at seeing Perseids (weather permitting), but folks south of -32 degrees latitude get the shaft.

 

On the world map above, the red shaded area is the region where the Perseids will not be visible. If you live south of Brazil, at the very southern tip of Africa, or southern Austrailia, you need to take a road trip to the North if you wish to see Perseids. If you want see decent numbers, it will be a long ride, as you need to trek to somewhere above  -17 degrees latitude.

So will I see Perseids? You can find out on your own — look up your latitude (remember, Google is your friend), use the equation above, stick in 58 degrees for the dec, and calculate the maximum elevation. If it is above 15 degrees, you are good.

Remember to get away from city lights. A dark sky is important.

Enjoy the show!

How low can they go?


Real-life meteor showers are not like what you see in movies — there are no flaming rocks barreling out of the sky blasting holes in buildings, or sending cars hurling many yards through the air. Most meteor showers are caused by debris left behind by comets, icy particles mixed with dust and organics that stand no chance of surviving their kamikaze death dives through Earth’s atmosphere. The meteors that actually do make it through, becoming meteorites when they strike ground, are very, very few in number and originate from asteroids (and much more rarely, Mars and the Moon). There are only a handful of recorded falls each year.

So how low can a Perseid get? The NASA all-sky cameras can provide the answer, at least for the bigger Perseids (inch or so across); the smaller particles burn up higher. Our two station camera network can determine the trajectory of a meteor through triangulation, and tell us the start height of the meteor (the location where it is first seen) and its end height (the location where it disappears or “burns up”). Both cameras observed 80 Perseids last year and 24 so far this year, which gives us enough data to tackle the problem.

We start out by taking the end heights of the Perseids and throwing them into 1 mile wide altitude bins. This results in the following graph:

 

Looking at the plot, it is apparent that most large Perseids burn up at about 56 miles (90 km) altitude. Some ablate as high as 65 miles (104 km), whereas others may get as low as 47 miles (76 km) altitude. We see none getting down to 45 miles or lower, which gives this old ground dweller a warm fuzzy feeling — I can enjoy the shower, secure in the knowledge that the meteors are going poof way up there.

It turns out that our friends the Perseids don’t get very low at all, ending their interplanetary journeys at least 46 miles above our heads.