Tag Archives: aircraft

Live Twitter chat with Operation IceBridge

Posted on by .

NASA P-3 flight deck

Have you ever wondered what it’s like to fly over the Arctic while doing scientific research? On April 8, you can follow NASA’s Operation IceBridge and ask questions about how polar researchers work and the science of polar ice as NASA’s P-3B airborne laboratory flies 1500 feet above Greenland’s ice sheet and glaciers.

IceBridge will post live in-flight highlights on Twitter@NASA_ICE from 10 a.m. to 1 p.m. EDT on Monday, April 8 (weather delay date April 9). Follow along during the flight and hear from the scientists,engineers and guest high school science teachers on board. We’ll also be taking your questions. Just use the hashtag #askNASA.

Sea ice in the Nares Strait west of Greenland

IceBridge Field Work – A Project Manager's Perspective

Posted on by .

By Christy Hansen, IceBridge Project Manager, NASA Goddard Space Flight Center

Field work in the Arctic is a unique and challenging experience. It takes an experienced and tough team to complete mission objectives from start to finish despite the biting cold, long days and noisy environment. Early morning temperatures are often in the negative single digits, and the IceBridge team powers through it preparing for flight each day. A typical day’s work can range 12 to 14 hours, a schedule that is repeated daily until the airport is closed or until the flight crew reaches a required hard down day.

My project management perspective allows me to take a step back and appreciate not only the technical expertise of our instrument and flight crew teams, but the masterful choreography that unwinds each day to ensure the P-3B aircraft is prepped and ready, the instruments are powered on and in working condition, and the weather and corresponding science flight plan has been assessed and defined. Being actively involved in all phases of Operation IceBridge makes for a stronger and well-versed leader better able to assist any part of the team at any time. By doing this, I can ensure we are on track to meet our mission and science requirements, assist with troubleshooting in and out of the field, better manage project milestones, and ensure streamlined communication across all IceBridge disciplines with a common goal.

IceBridge project manager Christy Hansen on the stairway to NASA's P-3B.
IceBridge project manager Christy Hansen on the stairway to NASA’s P-3B. Credit: NASA / Christy Hansen
But why do we do this? How do we do this? 

We do all of this in the name of science, collecting polar geophysical data that will help characterize the health of the Arctic and Antarctic. The in-field data and derived data products IceBridge produces are helping to show annual changes in the ice. These data can be entered into models that can more accurately predict what might happen in the future in terms of ice sheet, glacier, and sea ice dynamics, and ultimately sea level rise; all of which have serious consequences for climate change.

But how do we reach these science goals? The steps and teamwork required are simply astounding. Each part of our team is like a puzzle piece and everyone is needed to complete the puzzle. All teams must clearly know their individual responsibilities, but also be able to work together and mesh where their job ends and another begins.

The choreography starts in the beginning, or planning phase where the science team establishes targets of interest on the ice in accordance with our level 1 science requirements. Then our flight planner designs survey flights, having a unique ability to efficiently mesh the science targets with the range and flight dynamic capabilities of the P-3B aircraft.

Next the aircraft office at NASA’s Wallop’s Flight Facility prepares the P-3B for deployment to some of the harshest environments on Earth and supplies the flight crew that executes the specific flight paths over our required science targets. The instrument teams provide the instrumentation—laser altimeters, radars, cameras and a gravimeter and magnetometer—and expertise in operating equipment and processing data during and after flights. Our logistics team deploys to the field ahead of time, establishing security clearances, local transportation and accommodations, and internet and airport utilities.

Finally, our data center ingests and stores the data that our team collects, ensuring it’s useable and available to the wider community. Our data is not only used by polar scientists and other researchers around the world, it is also used to help satellite missions like the European Space Agency’s CryoSat-2 and NASA’s ICESat-2 calibrate and validate satellite instrumentation.

A view of ice from NASA's P-3B airborne laboratory.

A view of ice from NASA’s P-3B airborne laboratory. Credit: NASA / Christy Hansen

And finally, a day in the field …

Assuming a standard 8 a.m. local takeoff and eight hour mission duration, we generally have three major groups who follow different schedules pre-flight each morning.

The P-3 maintenance and flight engineer crew typically starts the earliest, heading to the airport about three hours before takeoff. They prep and warm up the plane, conduct some tests and fuel it, all in preparation for the instrument team arrivals and flight operations.

In parallel with aircraft prep, IceBridge’s project scientist, project manager and flight planner team head to the weather office. The team works with local meteorologists, reviewing satellite imagery and weather models to determine the optimal weather patterns that support our flight requirements—clear below 1500 feet, the altitude we typically fly—and final target selection.

In the meantime, the instrument teams arrive at the aircraft to power up and check their systems prior to takeoff. By 7:30 a.m., the aircraft doors close, and we take off by 8. Our eight-hour flights range between flying high and fast, to low and slow over our targets, which include geophysical scans of ice sheets, glaciers, and sea ice.

We typically land around 4 p.m., close out the plane, check data and meet at 5:30 for a science meeting. Many folks continue to work for a few hours afterward, processing data or writing mission reports. All of this is repeated daily, for up to 6 days in a row, which can be exhausting, but in the name of important scientific research, an amazing team, and majestic polar landscapes, I could not imagine anything else.


Crew members working on the P-3B. Credit: NASA / Christy Hansen

IceBridge Arctic 2013 Check Flights Complete

Posted on by .

By George Hale, IceBridge Science Outreach Coordinator, NASA Goddard Space Flight Center

On Mar. 14 and 15, the IceBridge team carried out project check flights in preparation for the Arctic campaign. After an engineering check flight earlier in the week to make sure everything is properly secured inside the aircraft, scientists and a small number of instrument operators board the P-3 to begin flights over the Wallops Flight Facility airfield and beaches near Wallops Island, Va., to test the Airborne Topographic Mapper (ATM) and Digital Mapping System (DMS) and over the Atlantic Ocean to test the Multichannel Coherent Radar Depth Sounder (MCoRDS), the snow and accumulation radars, and Ku-band radar altimeter.

These check flights have two main purposes. The first is to test the equipment to make sure it’s all in working order and the second is to collect data that is used to calibrate the instruments. Every time an instrument is installed in a research aircraft it’s important to make sure that nothing has changed since the last time it was flown.

Flight paths for both IceBridge check flights.

Flight paths for IceBridge check flights on Mar. 14 (blue) and Mar. 15 (red). Credit: NASA

Ground tests can catch many alignment and installation problems, but the real moment of truth comes in flight tests. On the afternoon of Mar. 14, the IceBridge team took off for flights near Wallops to test the ATM and DMS systems and check other electronics. By flying a level flight at varying altitudes, the teams can collect data that ensures their instruments are properly calibrated.

Different materials reflect light to varying degrees, which can make a difference with a laser-based instrument like ATM. Because IceBridge is measuring snow and ice, highly reflective materials, the ATM team will often test over sandy areas the beaches near Wallops. This is because sand reflects light in a similar way to ice. Another test is to check areas near each other with widely different albedos, for example, the white numbers and surrounding dark pavement on the runway. If light and dark targets next to each other show the same elevation then the instrument is calibrated properly.

The NASA P-3B at Wallops Flight Facility before the IceBridge check flight on Mar. 14, 2013. Credit: NASA / Kyle Krabill
The NASA P-3B at Wallops Flight Facility before the IceBridge check flight on Mar. 14, 2013. Credit: NASA / Kyle Krabill

Similarly, the team tests the DMS instruments to make sure the camera is aligned properly and that focus and frame rate are set appropriately. The rate at which the DMS camera captures photos depends on the aircraft’s speed and altitude, with lower altitude and higher speeds needing a faster rate to ensure proper coverage.

On Mar. 15, the team took off in the morning to do final checks of the P-3B’s radar instruments. Instead of flying along the beaches near Wallops, the P-3 headed out 200 nautical miles over open water in the Atlantic Ocean. The reason for doing this test over the ocean is twofold. First, U.S. law prevents IceBridge from operating its radars inside the country, and second, the ocean surface acts almost like a mirror for the radar, making it ideal for testing. By comparing transmit and return signal strengths at different altitudes, the team can make sure the radar is working properly.

The P-3B returns to Wallops after the first of two IceBridge check flights. Credit: NASA / Kyle Krabill
The P-3B returns to Wallops after the first of two IceBridge check flights. Credit: NASA / Kyle Krabill

Signal strength, however, is only part of the picture. MCoRDS is made up of several antennas in an array, with each antenna’s signal recorded separately. To make sure that each element is aligned correctly, the P-3B climbs to a high altitude and banks left and right while researchers measure how the return signals change during the maneuver. These maneuvers are also the reason why the radars are tested on a separate day from ATM and DMS. Once the plane banks more than 15 degrees, its wing blocks these instruments from seeing GPS satellites in orbit and both ATM and DMS need accurate GPS data to work properly.

With the check flights complete it is nearly time for IceBridge scientists, instrument team members and flight crew to make the trip to Thule, Greenland, to start the 2013 Arctic campaign. The P-3B is scheduled to make the transit flight from Wallops early on the morning of Mar. 18, and the first science flight is scheduled for Mar. 20.

Preparations for Arctic Campaign Under Way

Posted on by .

By George Hale, IceBridge Science Outreach Coordinator, NASA Goddard Space Flight Center

An IceBridge field campaign is the culmination of months of planning and preparation. At January’s science team meeting, scientists focused the campaign’s goals and provided mission planners the details needed to finalize flight plans. With these final details ironed out the next step was to start preparing the tools of the trade, IceBridge’s aircraft and instruments. For the past several days, instrument teams and aircraft technicians at NASA’s Wallops Flight Facility in Wallops Island, Va., have been getting the P-3B ready for the 2013 Arctic campaign, which is scheduled to have its first science flight on Mar. 20.

Operation IceBridge is but one of several missions to use NASA’s P-3B airborne laboratory. After each mission, this aircraft returns to its home base at Wallops where it undergoes repairs and routine scheduled maintenance needed to keep it flying at peak efficiency and where science instruments are swapped out. This rotation of airborne science missions keeps the Wallops aircraft team busy, preparing between three and five missions per year. “Sometimes it’s more and sometimes it’s less,” said P-3B flight engineer Brian Yates. “We’re working on some relatively large projects, so we have five this year.”

NASA's P-3B airborne laboratory in a hangar at Wallops Flight Facility as it is being prepared for the upcoming Arctic campaign.

NASA’s P-3B airborne laboratory in a hangar at Wallops Flight Facility as it is being prepared for the upcoming Arctic campaign. Credit: NASA / George Hale

After the aircraft’s maintenance is complete and the previous mission’s equipment has been removed, the IceBridge team starts installing the mission’s suite of science instruments. This process can be generally divided into a few portions: installing the instrument and the equipment needed to control it and collect data, testing the individual instruments and checking to make sure the aircraft and instrument suite work together as they should.

The first step is installing the components that gather the data, such as cameras, radar arrays and laser transceivers. The Airborne Topographic Mapper (ATM) laser and Digital Mapping System (DMS) cameras are installed in bays on the underside of the aircraft. Each of these instruments looks down through windows in the plane’s belly. The Multichannel Coherent Radar Depth Sounder (MCoRDS) antenna is attached to the underside of the aircraft. Previously this has included antennas under the wings, but IceBridge is flying with a trimmed down MCoRDS instrument with an array beneath the P-3B’s fuselage.Additional radar instruments like the accumulation and snow radars and Ku-band radar altimeter are also installed at this time.

The MCoRDS radar antenna on a cart prior to being attached to the underside of the P-3B.

The MCoRDS radar antenna on a cart prior to being attached to the underside of the P-3B. Credit: NASA / George Hale

While this hardware was being installed on the plane, other members of the instrument team put together all of the hardware needed to operate the instruments in metal racks that are then securely bolted to the floor of the plane. Making sure everything is securely fastened is crucial because of the often turbulent nature of low-altitude polar survey flights.

ATM equipment racks waiting to be installed in the P-3B.
ATM equipment racks waiting to be installed in the P-3B. Credit: NASA / George Hale

Once everything is in place and secured the next step is to make sure the instruments work properly. This means rounds of testing both on the ground and in the air. Ground testing involves checking instrument connections and alignment. “We’ll check on the camera to make sure it’s seeing through the window ok and not catching the edge,” said DMS field engineer Dennis Gearhart.

Everything being used in this IceBridge campaign has flown before, but it’s important to make sure the instruments are working properly.”We want to make sure things work as well as they did when they were put into storage,” said ATM program manager James Yungel. To do this, the ATM team will bounce the laser off a ground target 500 feet away.

The MCoRDS antenna secured to the underside of the P-3B.

The MCoRDS antenna secured to the underside of the P-3B. Credit: NASA / George Hale

The real test of all this work comes with the mission’s check flights on Mar. 13 and 14. The first flight, known as an engineering check flight is carried out with flight crew only and is to ensure that everything is properly installed and secured. Scientists and instrument operators participate in the second flight, where instruments are powered on and tested. “The check flights are a final arbiter,” said Yungel.

This year’s IceBridge Arctic campaign will run from Mar. 18 through May 3. The P-3B will operate out of airfields in Thule and Kangerlussuaq, Greenland, and Fairbanks, Alaska.

IceBridge Visits McMurdo Station

Posted on by .

By George Hale, IceBridge Science Outreach Coordinator, NASA Goddard Space Flight Center

A team from NASA’s Operation IceBridge recently traveled to Antarctica to conduct a site survey of U.S. Antarctic Program facilities at McMurdo Station in Antarctica. From Dec. 6 to Dec. 13, IceBridge project manager Christy Hansen, NASA P-3B pilot Matt Elder and NASA flight engineer Brian Yates met with people from the U.S. National Science Foundation (NSF), the U.S. Antarctic Program’s Antarctic Support Contract (ASC) team and 109th Airlift Wing of the New York Air National Guard to study the feasibility of operating NASA’s P-3B research aircraft out of Antarctica. Large airborne science missions like IceBridge are a significant logistical undertaking, requiring runways, aircraft maintenance facilities, fuel, electrical power and facilities to house mission personnel.

109th AW LC-130 at Christchurch, New Zealand
One of the 109th AW LC-130s at Christchurch, New Zealand. Credit: NASA / Christy Hansen

This site survey is in preparation for an upcoming meeting with NSF to discuss possible future options for expanding IceBridge’s mission into previously unsurveyed parts of Antarctica. All U.S.-based science operations in Antarctica are required to go through NSF’s Office of Polar Programs (OPP) to receive official approval and support. Because OPP and the 109th AW handle logistic and airlift operations for McMurdo and other U.S. scientific stations in Antarctica, IceBridge has to coordinate operations with them. IceBridge has a history of working with the 109th AW during previous Arctic campaigns in Greenland.

First, the team traveled to Christchurch, New Zealand, a jumping off point for travel to Antarctica. There they met with USAP ASC and 109th AW personnel to determine the logistics needed to support NASA’s P-3B, checked out cold weather gear needed for Antarctica and prepared for the transit flight from Christchurch to McMurdo. “The [U.S. Antarctic Program] and 109th guys welcomed our attendance, questions and shared some of their general flight experiences with us,” said Hansen.

IceBridge project manager Christy Hansen wearing NSF-issued cold weather gear
IceBridge project manager Christy Hansen wearing NSF-issued cold weather gear. Credit: NASA / Christy Hansen

After arriving at McMurdo, the survey team got to work meeting with various people to discuss IceBridge’s needs and how the mission would fit into overall operations there. With many airborne operations going on at McMurdo, flights will need to be carefully scheduled and coordinated. This is to avoid interfering with existing takeoff, landing and fueling operations. In addition, some of IceBridge’s scientific instruments require power at all times. This would mean finding a way to route power to the P-3 or run a generator near the aircraft when it is parked.

View of McMurdo Station from Hut Point
View of McMurdo Station from Hut Point. Credit: NASA / Christy Hansen

The cold, unpredictable and rapidly-changing weather in Antarctica adds an extra layer of difficulty to flying and maintaining aircraft there. Elder and Yates met with 109th AW personnel to discuss the finer points of operating and maintaining aircraft in Antarctica’s challenging conditions. For instance, operating in Antarctica means that the P-3B may need a few modifications to make it compliant with existing airfield capabilities at McMurdo and meet the unique challenges of flying in the Antarctic. For example, lines of longitude converge at the pole, meaning the P-3B needs additional navigational systems.

The P-3B is only part of the overall picture though. With flight crew, scientists and instrument operators, IceBridge has a fairly large personnel footprint. This means arranging lodging for people and providing space and power for instrument teams to set up their equipment, including GPS ground stations, gravimeter and magnetometer instruments and various computers.

Building that could serve as a location for gravimeter and ATM GPS equipment.
Building that could serve as a location for gravimeter and ATM GPS equipment. Credit: NASA / Christy Hansen

Another objective of the visit was to observe 109th flight crew operations first hand. The IceBridge team achieved this by riding along on a flight to the Amundsen-Scott South Pole Station. There, the team observed the condition of the South Pole ski way, in the unlikely event the P-3B had to land there. “The 109th and Antarctic Support Contract reps have been treating us well,” said Hansen. “We did not expect the South Pole opportunity.”

The IceBridge team and members of the 109th AW strike a pose at the South Pole
The IceBridge team and members of the 109th AW strike a pose at the South Pole. Credit: NASA / Christy Hansen

With the site survey completed, IceBridge mission planners will prepare for a Jan. 3 face-to-face meeting with NSF to discuss future plans. IceBridge is looking forward to continued work with the USAP teams to break new ground on operating NASA aircraft out of Antarctica. “NSF, ASC and the 109th provided the IceBridge survey team with excellent support and feedback during their visit,” Hansen said. “This could not be achieved without the team work and support of the National Science Foundation.”

Keeping IceBridge Flying

Posted on by .

By George Hale, IceBridge Science Outreach Coordinator, NASA Goddard Space Flight Center

Success in science takes many things. Dedication and hard work are just a couple, but one thing that airborne science requires that other disciplines don’t need is aircraft. Without aircraft airborne science would just be science. And one thing is certain about aircraft. They require constant and vigilant maintenance to keep operating at their peak. NASA airborne missions like Operation IceBridge rely on skilled and dedicated mechanics and technicians to keep their planes flying in some of the harshest conditions around.

But finding people with the right balance of training and temperament to work on NASA’s fleet of aircraft is becoming more difficult. With a decreasing interest in working in the aviation field, an aging workforce and increasingly specialized training needed, NASA managers are finding it harder to hire the kind of people needed to keep things going.

The IceBridge DC-8 undergoing final preparations for the first Antarctic campaign flight of 2012.
The IceBridge DC-8 undergoing final preparations for the first Antarctic campaign flight of 2012. Credit: NASA / Jeremy Harbeck

Top-notch Training

Being an aviation mechanic requires something called an aircraft and power plant, or A&P license, which gives its holders permission to work on any aircraft the U.S. Federal Aviation Administration controls, from ultralights to jumbo jets. The FAA only grants this license after applicants have completed rigorous training and passed three written, three oral and three hands-on tests. “Before you even get to put your hands on an airplane, there’s a lot of stuff you have to do,” said NASA DC-8 crew chief James C. Smith III.

Most people in the field got their training in one of two places. “You can either go to a two-year college or get what you need through military experience,” said Smith, who spent years in the U.S. Army working on helicopters. Today an increasing proportion come from the military as civilian training programs have been losing popularity. “Several college specific A&P schools have closed because they don’t have enough people coming through,” Smith said.

NASA's Ikhana uninhabited aerial vehicle, one of the many aircraft that NASA's technicians keep in top condition.
NASA’s Ikhana uninhabited aerial vehicle, one of the many aircraft that NASA’s technicians keep in top condition. Credit: NASA / James C. Smith III

NASA engineering technician Rich Souza came to NASA after several years both in the U.S. Air Force and private industry. Souza specializes in aircraft engines, working in the engine shop at NASA’s Dryden Flight Research Center and keeps the DC-8 running at its peak. For him, the military was a great way to go and he recommends it to anyone who is interested in doing hands-on work with aircraft. “They give you the skillset, the aptitude and the attitude you need to do your job,” Souza said.

Brad Grantham, a NASA avionics technician, also speaks highly of military training, though he earned his position in a less conventional way. He started working with aircraft right after high school, taking a low-paying entry level job and working his way up the ladder. “Any time I found a position to advance and learn more about aircraft systems, I took it,” Grantham said. Avionics, Grantham’s specialty, covers everything electronic in the aircraft from navigation systems to the plane’s satellite communications system, all important when flying anywhere, let alone over Antarctica. “An aircraft can’t just pull over if there’s a problem,” Grantham said.

Avionics technician Brad Grantham (right) and Airborne Topographic Mapper team members Matt Linkswiler and Robert Harpold prepare instruments for the IceBridge campaign.
Avionics technician Brad Grantham (right) and Airborne Topographic Mapper team members Matt Linkswiler (left) and Robert Harpold prepare instruments for the IceBridge campaign. Credit: NASA / Tom Tschida

Never a Dull Moment

No matter how one learns about aviation, once at NASA, technicians enter a field where no two days are the same. Technicians are always reconfiguring aircraft for different missions and although they may have favorite aircraft, they work on more than just one. NASA’s fleet is diverse, ranging from the propeller-driven P-3B, to giant 747s, to the ER-2 high-altitude research aircraft and a variety of other planes.

This diversity of aircraft brings a refreshing variety to a busy job, but one of the big perks of working on NASA aircraft is that technicians go where the plane goes. Grantham and Souza have traveled many places around the world during their time with NASA and both have deployed to Punta Arenas, Chile, three times to support the DC-8 for Operation IceBridge.

In addition to their usual ground duties, working on aircraft mechanical and electrical systems, NASA technicians also pull a second duty as safety techs aboard the aircraft. This involves showing passengers how to use the aircraft’s safety equipment, keeping the aircraft clean and everything aboard secure and generally keeping everyone on board safe. Flying on scientific missions aboard planes they maintain is another thing that separates NASA’s technicians from aviation techs in other organizations. “It’s nice to see things from both sides,” said Grantham.

Group photo of IceBridge team in front of the NASA DC-8.
Group photo of IceBridge team in front of the NASA DC-8. Credit: NASA

The Path Taken

The road to becoming one of the people responsible for keeping NASA’s planes flying begins early on. Both Souza and Grantham realized at a young age that they wanted to work with aircraft in a personal and hands-on way. Preparing for such a career means getting as much experience as you can with anything mechanical and electrical. “It gives a good baseline for further training,” said Souza.

Experience and knowledge count but hard work and adaptability are just as important. You need to stay positive and be enthusiastic. “I worked hard jobs to get better jobs,” Grantham said. “When you do hard work you get to learn more.” Also, being able to adapt to changing situations is vital. “You n ever quite know where you might go next or what you’ll be working on,” Souza said. “So you need to keep on your toes.”

With many of the aviation industry and NASA’s experienced technicians retiring and an impending shortage of qualified people, a career in aviation with NASA is something that many recommend for those who want to travel, do hands-on work and always have something new to learn and do. “It’s a pretty cool job,” Souza said. “How many people get to fly over Antarctica?”

Preparing the DC-8 for Antarctica 2012

Posted on by .

By George Hale, IceBridge Science Outreach Coordinator, NASA Goddard Space Flight Center

Over the next few weeks the IceBridge team will prepare NASA’s DC-8 airborne laboratory for the 2012 Antarctic campaign. Long hours in the hangar at NASA’s Dryden Flight Research Facility mean that the MCoRDS antenna and Airborne Topographic Mapper have been installed and all ground tests for ATM are complete. Next week, the radar and gravimeter teams will begin their preparation work.

IceBridge DC-8 preparing for outdoor ATM ground test

IceBridge DC-8 preparing for outdoor ATM ground test. Credit: NASA / Tom Tschida

MCoRDS antenna installed on the DC-8

MCoRDS antenna installed on the DC-8. Credit: NASA / Tom Tschida

Airborne Topographic Mapper instrument installed inside the DC-8
ATM instrument installed inside the DC-8. Credit: NASA / Tom Tschida

ATM team member Jim Yungel (front) and Matt Linkswiler make last minute adjustments to the instrument

ATM team member Jim Yungel (front) and Matt Linkswiler finish installing the ATM instrument assembly. Credit: NASA / Tom Tschida

ATM consoles installed in DC-8 cabin
ATM team members (left to right) Matt Linkswiler, Robert Harpold and Brad Grantham carry out ATM functional tests. Credit: NASA / Tom Tschida

ATM laser trace on hangar floor
ATM laser trace on hangar floor. Credit: NASA / Tom Tschida

The end of a successful ATM ground test. Pictured left to right: Kevin Mount, Robert Harpold, Jim Yungel,Lorenzo Sanchez, Joe Niquette and Matt Linkswiler. Credit: NASA / Tom Tschida

IceBridge Preparations Continue

Posted on by .

By George Hale, IceBridge Science Outreach Coordinator, NASA Goddard Space Flight Center

The work of installing IceBridge’s science instruments on the NASA DC-8 airborne laboratory continued this week. People from the Center for the Remote Sensing of Ice Sheets at the University of Kansas (CReSIS) and from Sander Geophysics Limited (SGL) spent the week installing the aircraft’s various radar instruments and the AirGrav gravimeter

With the last of the instruments installed and operational, IceBridge is now ready to start test flights next week. Monday afternoon’s schedule includes pilot proficiency flights and on Tuesday and Wednesday IceBridge will carry out instrument check flights.
University of Kansas Fernando Rodriguez-Morales & Bryan Townley work the MCoRDS Radar instrument installation
University of Kansas FernandoRodriguez-Morales and Bryan Townley install the MCoRDS Radar instrument 


SGL's Stefan Elieff and Sean O’Rourke complete the Gravimeter instrument installation


SGL’s Stefan Elieff and Sean O’Rourke finish installing the gravimeter instrument 


University of Kansas Ben Panzer and NASA Tech Donny Bailes work the KU and Snow Radar instruments antennas installation in the DC-8 wing root area


University of Kansas’ Ben Panzer and NASA Tech Donny Bailes work on the KU and Snow Radar instruments antennas in the DC-8 wing root area 


NASA Techs Kevin Mount and Terrance Dilworth accomplish instrument rack inspections on the DC-8


NASA Techs Kevin Mount and TerranceDilworth inspect instrument racks on the DC-8


NASA DC-8 Techs weigh the aircraft with the OIB instrument installation on board


NASA DC-8 Techs weigh the aircraft withthe OIB instruments on board 


Weather and Operation IceBridge

Posted on by .

By John Sonntag, OIB Instrument Team Lead, NASA

If you know the saying “make hay while the sun shines”, you’ve already got a pretty good idea of how weather affects flight operations for Operation IceBridge. Generally speaking, our flights require clear skies over the area in which we are operating on any given day. There are two good reasons for this. First, some of our sensors, including the Airborne Topographic Mapper and the Digital Mapping System, are optical instruments and need the sky between the aircraft and the ground to be cloud-free to obtain their measurements. Second, since we usually fly low and close to terrain (and sometimes amongst mountain peaks), our pilots need clear skies in order to see and avoid the terrain for flight safety reasons. These requirements mean that weather largely governs what we do on any given day, and makes it necessary for OIB project scientist Michael Studinger and myself to remain immersed in the minutiae of polar weather every day while we are in the field. On every potential flight day, we must make a decision about whether to fly and where to fly, and if we make the wrong decision we might face the mortifying prospect of returning from an expensive taxpayer-funded flight without science data to show for it. So far in the 3-year history of OIB, that has not happened, and Michael and I very much want to maintain that record.

Michael and I typically start studying the current weather patterns governing our operating areas at least a week prior to our deployment. It is helpful to develop a sense of context and a feeling for the current weather systems and their movements before we must begin making decisions on flight days. Our primary tools for this, and for all of our weather analysis tasks, are satellite imagery in several wavelengths, meteorological forecast models and point observations of current weather conditions from observers on the ground.

An early morning weather satellite image of Greenland and Arctic Canada, taken on 9 May 2012.

An early morning weather satellite image of Greenland and Arctic Canada, taken on 9 May 2012. This image is an infrared image from a NOAA polar orbiter, and while it shows significant cloud cover at several altitudes over western Greenland, we chose to fly a mission along a narrow corridor along the northwest coast of Greenland where the weather was clear. Credit: NOAA

Satellite imagery, most of which is provided by NOAA polar-orbiting satellites in our case, gives us a snapshot of the clouds over an area of interest. Imagery in the infrared band shows us not only the extent of the clouds over an area but also suggests the altitude of the cloud tops, since the infrared band is sensitive to temperature, and cloud temperatures are dependent on their altitude. Basically, bright white clouds are high, gray clouds are medium or low, and ground fog can sometimes be almost indistinguishable from the ice surface as their temperatures are similar. Visible imagery is better at showing us texture, which helps us distinguish between ice surface and fog, estimate the thickness and density of the cloud cover and determine the distance between cloud bases and the terrain beneath by virtue of the shadow they cast on the surface, especially when the sun angle is low. Another type of imagery we sometimes use is known as the “3 micron” band for its wavelength. This type is particularly sensitive to the amount of water vapor present in cloud masses.

We often refer to ground observations to help us refine our interpretation of satellite imagery, primarily because they provide a reliable measurement of the distance between the ground and the cloud bases. Sometimes the clouds are high enough and the terrain sufficiently benign that we are able to fly below the cloud bases, and point observations occasionally allow us to make such a judgment with some confidence we might not otherwise have. We must be careful, however, to remember that these observations are valid at one point only, while our flights cover large distances.

But for forecasting weather into the future, we are highly dependent on computer meteorological models, which predict what the weather may be like later in a day, or into the next day or beyond. Such information is critical for planning and optimizing our flight selections. For example, we might examine satellite imagery early on a potential flight morning and conclude the weather over our target is clear, but if a forecast model shows that the weather there will deteriorate by mid-day we would probably choose not to fly there. Sometimes the reverse occurs, where morning imagery might show marginal conditions over a target area but the forecast models confidently predict quick improvement. In such a case we might choose to launch a flight into the area, if our confidence in the model predictions is sufficient.

A typical flight day for me (and probably Michael as well) literally starts with weather as soon as I roll out of bed. The first thing I do every morning, even before brushing my teeth, is to open up my laptop and download a few satellite images to get a sense of cloud cover. That way I can mull it over while I get showered and into my flight suit and have breakfast. After breakfast, Michael and I, and our pilots, head to the local airport’s weather office to get their take on the weather where we are going. I cannot stress enough the importance we place on our discussions with these professional meteorologists, nor can I praise them enough for the help they invariably give us. Most of them seem to genuinely enjoy the professional challenge we bring to them, since the kind of flying we do, and the weather we are dependent on, are so different from those of the flight crews they normally deal with. In this morning weather briefing, we go over everything they have available, including satellite imagery, model predictions, point observations, and their own professional and experientially-derived “feel” for the conditions. Once we have gathered all the information available, it is decision time. We always remember that when we launch a flight, we are committing the U.S. taxpayer to pay many thousands of dollars to operate a big, expensive aircraft that day. So we take this decision very seriously, and at times it can be a rather nerve-wracking process.

Icebergs in a northwest Greenland fjord shrouded in fog.

Icebergs in a northwest Greenland fjord shrouded in fog. Credit: NASA/Jim Yungel.

Once in the air we constantly monitor the weather to see if it was as we expected, based on the morning weather briefing. It usually is, though the exact locations of cloud boundaries and ceilings are sometimes slightly different from what was predicted, and occasionally ground fog might exist where we did not expect it. We find that ground fog is consistently the most difficult aspect of polar weather to predict, although it has never adversely affected a flight to a serious degree. We also monitor the winds and compare these to the forecasts, which is important because winds can create turbulence under certain conditions, and turbulence can create a variety of problems for us.

Once we land, Michael and I immediately head back to weather office to get a forecast for the next day. Next, based on what I heard at this post-flight briefing and on further information I obtain from the internet, I prepare a weather briefing for the entire field team, which I give at our nightly science meeting. This briefing usually has two parts. First is a quick retrospective analysis of the day’s mission, comparing the weather we expected with what we actually encountered. Doing this on a daily basis helps us fine-tune our understanding of the performance of various weather models, our interpretation of imagery and our general decision-making process. Next I give an overview of our expectation of the next day’s weather and which flights might be best-suited for it. This enables the flight crew and the instrument operators to prepare for the next day’s activities.

The next morning, the process starts all over again. By the time we end a long deployment (the current one will be 11 weeks long), I look forward to spending entire days without looking at a weather image. But to be honest, I am at heart a weather geek, and after being back home for a while I miss the sense of connectedness I had to the natural world from remaining so immersed in meteorology for such a long time.

I have found that the key to successful weather-based decision-making is to consult as wide a variety of sources as possible, diligently calibrate oneself to the strengths and shortcomings of all weather models and other sources of data, and probably most importantly, simply stay on top of the weather situation multiple times each day. By doing this we can develop an almost intuitive sense for the evolving weather regime, which helps us quickly digest new information and interpret it correctly. Finally, I think it’s important to cultivate a sense of humility with regards to weather forecasting. Meteorology is a complex business and there is much we do not know. This is particularly true in the polar regions, because in contrast to places such as the continental US, the measurements that feed weather prediction tools are extremely sparse. In practice this sense of humility translates into keeping an open mind about the weather, avoiding coming to hasty conclusions before consulting every possible source and having contingency plans ready in case things do not work out exactly as we thought.

Getting Ready for the 2012 Arctic Campaign

Posted on by .

By Michael Studinger, IceBridge Project Scientist, NASA Goddard Space Flight Center/UMBC

Wallops Flight Facility, Wallops Island, VA – Welcome to the fourth annual Arctic campaign with NASA’s Operation IceBridge. Over 75 days, we will collect data with two aircraft over the Greenland Ice Sheet, the Arctic Ocean and the Canadian ice caps. We will be based in Kangerlussuaq and Thule Airbase in Greenland, and in Fairbanks, Alaska for sea ice flights over the Beaufort Sea.

During the past several weeks, Operation IceBridge teams have worked at NASA’s Wallops Flight Facility on the eastern shore of Virginia, installing cutting-edge laser altimeters and extremely sensitive radars that will allow us to measure changes in sea ice thickness in the Arctic Ocean. We will also be monitoring changes in the thickness of ice sheets and glaciers that cover most of the subcontinent of Greenland and the Canadian Arctic Archipelago. We will start our campaign with NASA’s P-3B Orion research aircraft from Wallops at Thule Airbase in northern Greenland with sea ice missions over the Arctic Ocean. The extent and thickness of the sea ice cover in the Arctic Ocean is declining quickly and we are there to take measurements that document this change from year to year. The second plane in this year’s Artic campaign, a Falcon HU-25 jet operated by NASA’s Langley Research Center in Hampton, Va., will join the campaign later in April carrying the Land, Vegetation, and Ice Sensor (LVIS), a high-altitude laser altimeter capable of measuring a 2-km-wide (1.2-mile-wide) swath.

The P-3B aircraft inside the hangar at NASA’s Wallops Flight Facility in Virginia.

The P-3B aircraft inside the hangar at NASA’s Wallops Flight Facility in Virginia. Credit: Michael Studinger.

Before we can start collecting data over the Artic we have to make sure that all installed sensors on the P-3 work and are calibrated. In order to make extremely precise laser altimeter measurements of the ice surface elevation we calibrate the instruments using target sites at the Wallops Flight Facility that we have surveyed on the ground. A second test flight takes us out over the Atlantic Ocean, some 200 miles away from the coast, where we can switch on the radar systems from the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas, without interfering with other systems. We use the radar signal that is bouncing back from the ocean surface to calibrate the radars. We also did a couple of maneuvers at high-altitude over the Atlantic to calibrate the antennas of the ice-penetrating radar systems that we will use to survey the sea ice, glaciers and ice sheets.

Research flying has little in common with everyday air travel. One of the maneuvers that we do during the test flights is to fly the aircraft at a 90° roll angle with the wings perpendicular to the horizon. Fasten your seat belts! You will (hopefully) never experience something like this on a commercial flight.

The P-3B on the ramp before a test flight. The antennas of the ice-penetrating radar system can be seen mounted under the wings.

The P-3B on the ramp before a test flight. The antennas of the ice-penetrating radar system can be seen mounted under the wings. Credit: Michael Studinger.

We are collaborating with other experiments such as CryoVEx, the CryoSat-2 calibration and validation campaign from the European Space Agency. We will also work closely together with teams that work on the ground and take measurements over sea ice in the Arctic Ocean, and do coordinated flights with an ER-2 high-altitude aircraft from NASA’s Dryden Flight Research Center in Edwards, Calif. The ER-2, a civilian research version of the Air Force’s U-2 , will carry the Multiple Altimeter Beam Experimental Lidar (MABEL). The ER-2 will fly out of Keflavik, Iceland, and climb to 60,000 feet on its way to Greenland to measure the same tracks as the P-3B Orion.

We have now completed all our test flights here at Wallops and are ready to go to Greenland where we hope to map much of the sea ice cover over the Arctic Ocean and the Greenland Ice Sheet.

Page 1 of 612345...Last »