Packaged in a protective container, the Joint Polar Satellite System-1, or JPSS-1, spacecraft is about to be mated atop a United Launch Alliance Delta II rocket at Space Launch Complex 2 at Vandenberg Air Force Base in California. Built by Ball Aerospace and Technologies Corp. of Boulder, Colorado, JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the NOAA and NASA. Liftoff is scheduled to take place from Vandenberg’s Space Launch Complex 2. Photo credit: NASA/USAF 30th Space Wing
Mission and launch officials for NOAA’s Joint Polar Satellite System-1 (JPSS-1) have convened today at Vandenberg Air Force Base in California in preparation for the satellite’s upcoming launch aboard a United Launch Alliance Delta II rocket.
Photo credit: NASA/USAF 30th Space Wing
During its time in the Astrotech Payload Processing Facility, JPSS-1 has undergone a series of routine prelaunch tests and checkouts, followed by mating to the Payload Attach Fitting and transport to the launch pad, where the Delta II rocket stood already assembled. The spacecraft then was hoisted into position atop the rocket. Also installed were a trio of Poly-Picosat Orbital Deployers, or P-PODs, which will deploy a host of small CubeSat payloads after the JPSS-1 satellite is released to begin its mission. The entire payload has been enclosed within the two-piece fairing that will protect it during the climb to space.
Two heavy-lift cranes are used to tilt and lower the Orion crew access arm onto a work stand in a storage location Oct. 17, 2017, at NASA’s Kennedy Space Center in Florida. The access arm was transported from Precision Fabricating and Cleaning in Cocoa, Florida. Photo credit: NASA/Kim Shiflett
When astronauts depart for missions to deep space, they will cross the Crew Access Arm about 300 feet above the ground to board their spacecraft. The access arm was delivered to NASA’s Kennedy Space Center in Florida on Oct. 17, 2017, to install on the mobile launcher in preparation for the first flight of the Space Launch System rocket, or SLS, and the Orion spacecraft.
The SLS will be the largest rocket in the world and will be stacked with Orion inside the historic Vehicle Assembly Building, or VAB, on the mobile launcher and rolled out to the pad prior to launch. The access arm will be one of 11 connection points to the rocket and spacecraft from the tower on the mobile launcher. After technicians install the arm, the mobile launcher will be rolled into the VAB for validation and verification tests.
For the first launch without crew, the access arm will provide a bridge to Orion for personnel and equipment entering the spacecraft during processing and prelaunch integrated testing while in the VAB and at the launch site. The arm is made up of two major components: the truss assembly and the environmental enclosure, or the white room. The arm will provide entry and emergency egress for astronauts and technicians into the Orion spacecraft. On future human missions, astronauts outfitted with newly designed space suits will enter the white room, where they will be assisted by technicians into the spacecraft for launch. The arm will retract before launch, and the other connections will release at liftoff, allowing the rocket and spacecraft to safely clear the launch pad.
Chuck Tatro of NASA’s Launch Services Program discusses the use of solar arrays on space science missions during the Energy Action Day employee event held Oct. 25, 2017, in Kennedy Space Center’s Space Station Processing Facility. Part of Energy Awareness Month, the event featured subject matter experts in the area of solar energy, its connections to the space program and options for residential solar power. Photo credit: NASA/Michelle Stone
The solar focus of NASA Kennedy Space Center’s Energy Action Day was a perfect fit for a facility located in the middle of the Sunshine State.
Employees from the Florida spaceport spent their lunchtime in the center’s Space Station Processing Facility conference room on Oct. 25 to hear from a panel of subject-matter experts from NASA, power utilities and other institutions regarding the use of solar energy in space, at Kennedy and even at home.
Chuck Tatro of NASA’s Launch Services Program explained the role of solar arrays in spaceflight, such as the Juno mission to Jupiter, and Kennedy Space Center’s Sam Ball discussed the 1.5-megawatt solar expansion in progress at the center. Bill McMullen of Southern Power, John Sherwin of the Florida Solar Energy Center in Cocoa, and Lorraine Koss of the Brevard County Solar Co-op spoke about community and residential solar energy, as well as ways to reduce energy loads at home.
“On Juno, there are almost 19,000 solar cells on three array wings,” Tatro said of the Juno spacecraft, which launched from Cape Canaveral Air Force Station on Aug. 5, 2011, and slipped into orbit around our solar system’s largest planet on July 4, 2016. “These are the largest solar arrays ever deployed on a far-reaching planetary probe.”
The event was held in conjunction with Energy Action Month, historically a nationwide effort to underscore how important energy management is to our national prosperity, security and environmental sustainability.
Sherwin pointed out that homeowners can evaluate and reduce their power usage even if they haven’t made the switch to solar.
“It’s no surprise that, here in Florida, most of it is in cooling,” Sherwin said. “But homeowners should look beyond air conditioners and appliances, because even small items such as DVRs, aquariums or landscape fountains outside will contribute to the energy load.
“You should look at all of this and say, where is my energy being used? And look for ways to reduce loads,” he said.