Weathering the Storm

Spring officially arrived on Sunday, but for IceBridge scientists in Thule, Greenland, spring was nowhere to be seen. Teams awoke Monday to a storm that continued through the day and by 5 p.m. local time, Thule Air Base had declared “Delta” status, prohibiting on-base travel and confining personnel to the buildings.

The storm on Monday in Thule intensified to “Delta” status. IceBridge scientists waited out the storm indoors. Credit: NASA/Jim Yungel

While snow blows outside, IceBridge project scientist Michael Studinger briefs the teams at the nightly meeting. A science flight the following morning would require clear skies. Credit: NASA/Jim Yungel

With no other options for food, some scientists turned to MREs (Meal, Ready-to-Eat), including this southwest style beef and beans with Mexican style rice, picante sauce, and chocolate disk cookie dessert. Credit: NASA/Jim Yungel

The ground-based GPS antennas did not fair as well in the storm, although both stations have since been reestablished and ready for a science flight. Credit: NASA/Kyle Krabill

By Tuesday morning the storm had passed and crews were quick to plow the runway. Credit: NASA/Jim Yungel

With a clear runway, the P-3 was rolled out for a long-awaited, high-priority sea ice flight to Fairbanks, Alaska. Credit: NASA/Jim Yungel

An Uncommon Routine

From: Michael Studinger, IceBridge project scientist, Goddard Earth Sciences and Technology Center at the University of Maryland, Baltimore County

Thule Air Base, Greenland — The IceBridge team arrived in Thule last week and the campaign is off to a good start. We flew four out of five days last week and accomplished three sea ice missions including an underflight of the European Space Agency’s CryoSat-2 satellite over the Arctic Ocean. After a week here in Thule, we are settled in and our operations have become routine.

Operation IceBridge accomplished three science missions during the first week, including an underflight of ESA’s CryoSat-2 over the Arctic Ocean just 120 miles from the North Pole. Credit: NASA

A typical IceBridge day in Thule Greenland starts at 5 a.m. when my alarm clock goes off. I start downloading satellite images to get an idea which missions may be possible to fly before I go to breakfast at 5:45 a.m. At 6:15 a.m., the pilot in command, mission manager, John Sonntag and myself meet at Base Ops to get a weather brief for the day.

The three meteorologists at Thule Air Base have known us for years and do an excellent job in providing us with a very detailed and specialized weather brief that we require for decision making. The demands for research flights are different from everyday air travel, and the polar environment poses great challenges in terms forecasting the weather. There is not a single weather station within hundreds of miles of our survey area that we could use to get a weather observation or that would provide observational data as input into a forecast model. Instead, we depend on satellite images that are several hours old. Visible images are dark for any area west of us. It requires experience and skill to interpret the forecast products for our purpose.

A few days ago, a model transect along our flight path showed dense cloud cover along the entire mission profile at 500 meters flight elevation calling for a no-fly day. We spent time with the meteorologists to understand the weather situation and decided to fly, despite the grim looking forecast. It was the right decision. The cloud layer depicted by the forecast model turned out to be a thin layer of haze that did not pose any difficulties for our laser and digital imagery sensors.

The weather forecast is shown along a survey line for a P-3 science mission. The forecast predicts dense cloud cover at the flight elevation (500 m), but after carefully studying the weather situation, we decided to fly. Credit: NASA

Between 6:30-6:45 a.m. we make a go/no-go decision. If we fly, the aircraft gets pushed out of the hangar and the fuel truck arrives. We need to collect one hour of static GPS data on the ground to calculate high-precision trajectory data from our flights. At 7:30 a.m. the door of the aircraft closes and we taxi to the runway to be ready for an 8 a.m. takeoff as soon as the tower opens.

We typically transit to the survey area north of Thule and then descend to 1,500 feet were we start collecting data. It’s still early in the season, which means missions west of Thule are flown in near-constant twilight, with the sun following us as we go west. When we turn around the western end of the line and fly back east, it immediately start getting lighter with every minute of the flight.

During the flight the operators monitor their instruments and make sure we collect high-quality data. Occasionally, adjustments need to be made to ensure the instruments keep working.

In-flight adjustments are often necessary to keep the instruments working and collecting high-quality data. Adjustments often require work below the deck to access the instrument sensors in the belly of the P-3. Credit: NASA/Michael Studinger

At 3:45 p.m. we typically land to leave enough time for a 1-hour post-calibration with the aircraft outside. By 5 p.m. the aircraft is rolled back inside the hanger and doors close for the night.

John Sonntag and myself quickly stop by Base Ops for another weather brief to see what’s in the mix for the next day. At 5:30 p.m. we have a science meeting where we discuss plans for the next day and talk about issues that are worth sharing with others. After the meeting, most people go straight to dinner followed by a late evening spent backing up data and processing data.

At 5 a.m. the next morning we start again.

A lateral moraine can be seen at the margin of the Greenland Ice Sheet near Thule Air Base. Credit: NASA/Michael Studinger

View From the Hut

We previously wrote about the Met Huts in Kangerlussuaq and Thule, Greenland –- the ground-based GPS stations that help scientists to ensure that GPS information collected on the aircraft is as accurate as possible. Kyle Krabill is back in Thule for the Arctic 2011 campaign making sure hut operations run smoothly.

From: Kyle Krabill, ATM Instrument Team Engineer, NASA’s Wallops Flight Facility

“Took a couple pictures this morning [March 17] from my view here at the hut. Sunrise is getting earlier by 13 minutes or so each day. The guys are flying another mission again today. Had a little warm front come through last night and its up to a balmy -17 (if you’re out of the wind)”

The P-3 passes over the Met Hut on March 17, 2011. Credit: Kyle Krabill

The sun rises in Thule, Greenland, as seen from the Met Hut on March 17, 2011. Credit: Kyle Krabill

Teacher, Student Blog From the Arctic

A teacher and student from the U.S. Naval Academy in Annapolis, Md., joined IceBridge in the field for the Arctic 2011 campaign. Follow their Arctic adventures here.

LCDR John Woods is a Meteorology and Oceanography Officer (METOC) currently teaching in the Oceanography Department at the United States Naval Academy (USNA). He is part of the Sea Ice Thickness Observation team currently participating in NASA’s Operation Ice Bridge 2011.

Eric Brugler is First Class Midshipmen who is an honors Oceanography major at the United States Naval Academy. He is interested in the polar regions of Earth because he believes they play a very important role to the Earth’s climate system.

Welcome to the 2011 Arctic Campaign

From: Kathryn Hansen, NASA’s Earth Science News Team/Cryosphere Outreach Specialist

On March 14, NASA’s P-3B landed in Thule, Greenland, for the start of the Arctic 2011 campaign of Operation IceBridge. Credit: NASA/Jim Yungel

On March 14, NASA’s P-3B aircraft landed in Thule, Greenland, where it will be based for the first leg of the Arctic 2011 campaign of Operation IceBridge. It’s our third annual campaign over the frozen north, ensuring the continuity of ice elevation measurements that scientists use to monitor change. This year, IceBridge is bigger than ever before and delving into new areas of exploration. Read more about the Arctic 2011 campaign and watch the video here.

Follow this blog throughout the 10-week campaign to read about the mission from the perspective of the scientists and crew on the ground (and in the air) who make the mission possible. They will give a behind-the-scenes account of individual flights and daily life in the field. They will share pictures and video from the sky and ground. And they will discuss the science questions being probed by the array of instruments onboard the flying laboratories. Welcome aboard!

Mission participants chat inside the P-3B during transit on March 14 from NASA’s Wallops Flight Facility in Wallops Island, Va., to the mission’s base in Thule, Greenland. Credit: NASA/Jim Yungel

IceBridge teams arrive in cold and sunny Thule, Greenland. Credit: NASA/Jim Yungel

Operation IceBridge Completes Another Successful Antarctic Campaign

From: Michael Studinger, IceBridge project scientist, Goddard Earth Science and Technology Center at the University of Maryland

A compilation of flight lines shows the paths of all 10 flights flown during Operation IceBridge’s Antarctic 2010 campaign. Credit: Michael Studinger

SANTIAGO, Chile — For the first time in six weeks the nose of the DC-8 is pointing north today after taking off from Punta Arenas airport. Instead of heading south on our familiar flight path to Antarctica over snow capped mountains that soon mark the last land before the windswept Southern Ocean, we are heading north towards Santiago, where we will stay overnight and continue on to Palmdale, California on the next day. We have completed our science flights over Antarctica and are heading home.

We had a very successful campaign and accomplished many things although it was challenging at times. Worse than normal weather over the Antarctic Peninsula and Marie Byrd Land and aircraft downtimes slowed down our progress during the deployment. By adapting our plans to the situation we were able to fly 10 successful missions making use of 84% of the allocated science flight hours. The IceBridge teams have spent 115 hours in the air collecting data and have flown 40,098 nautical miles, almost twice around the Earth. We collected landmark sea ice data sets in the Weddell, Bellingshausen and Amundsen Seas. We have now flown over every ICESat orbit ever flown by completing an arc at 86°S, the inflection point of all ICESat orbits around the South Pole. We have surveyed many glaciers along the Antarctic Peninsula, the Pine Island Glacier area and in Marie Byrd Land. We have collected data along a sea ice transit at the same time ESA’s CryoSat-2 satellite flew overhead allowing us to calibrate and validate the satellite measurements.

IceBridge teams pack the DC-8 in Punta Arenas, Chile, preparing to return home after the mission’s 2010 Antarctic campaign. Credit: Jim Yungel

We are fortunate to have the best equipment and tools for our research. The NASA DC-8 aircraft is ideally suited for our challenging missions in an extreme environment. The science instruments on the aircraft are cutting edge with unique capabilities. But it is the people of IceBridge that make the success of IceBridge, not the instruments or the aircraft. I would like to thank everyone involved in this campaign, at home or in the field, who with their dedication, experience, and skills make IceBridge a success. We also depend on many people and organizations who support our missions. The list is long but the following deserve a special thank you: our Chilean friends from the Centro de Estudios Científicos, the personnel of the Dirección General de Aeronáutica Civil at the Punta Arenas airport, the Armada de Chile, the Universidad de Magallanes, the U.S. Embassy in Santiago, the CryoSat-2 teams from the European Space Agency, the National Science Foundation’s Office of Polar Programs, the British Antarctic Survey, UNAVCO, the AMPS weather forecast team, and last but not least the staff at the hotel Diego de Almagro in Punta Arenas. Thank you all!

We are looking forward to returning to Punta Arenas next year for another IceBridge campaign over Antarctica. Meanwhile check this blog for our upcoming campaign over Greenland and the Arctic Ocean with NASA’s P-3B aircraft in March 2011.

What Could go Wrong?

From: John Sonntag, OIB Management Team member and ATM Senior Scientist, Wallops Flight Facility

One simple and irrefutable fact of airborne science is that things will go wrong. We utilize complex machines, such as airplanes and unique science equipment, in remote and often austere places, far from help and spare parts. We are heavily dependent on weather forecasts, in parts of the world with relatively little real data to inform the forecast models. These issues inevitably create challenges and problems. Sometimes the bad stuff is minor, sometimes it is crippling, and sometimes it just plain gets to you. For me, the Operation IceBridge Antarctic 2010 deployment had the third effect.

Of the four NASA-operated OIB field programs executed to date (remember that OIB funds two smaller university-operated efforts as well), this one has been the most beset with problems. First, our calibration mission prior to departing was delayed by the discovery of a problem with the DC-8’s rudder trim tab, which had to be replaced. This was no big deal, really, and obviously could not be a harbinger of things to come.

Shortly after we arrived in Punta Arenas last month, several members of our team got a bad stomach bug, or possibly food poisoning. Everyone recovered fully within a few days, but from what I was told it was the sort of stomach problem that makes sudden violent death seem like an attractive option. During and shortly after the gastrointestinal crisis, members of two different instrument teams were involved in (separate) automobile accidents, incredibly enough, at the same intersection. Thankfully everybody was OK, though issues with insurance, local police, and rental car agencies persisted for weeks.

Around the time of the second auto accident, it was also becoming clear that weather had become a major impediment to our operations. We watched a seemingly endless train of weather systems relentlessly pound our primary science targets around Pine Island Bay and the Peninsula, utterly frustrating our hopes to get in there for several weeks. We were able to hit other high-priority science targets, including three important sea ice surveys and a pair of flights around the South Pole, but soon we began to run out of targets other than the areas that were consistently socked in.

Next, that became a moot point when our mechanics discovered a broken fitting in a landing gear door on the DC-8. It took a few days to get the replacement part all the way down to Punta Arenas, and once it got here and the repair was made, well, the weather hadn’t really improved. So we took a chance on a marginal weather Saturday to get more than half of our “Peninsula 23” flight done. That raised spirits considerably, until the next morning when mechanics discovered a failed fuel flow sensor in the #3 engine. Luckily, we had a spare. Unluckily, the spare was also broken. It would take a few days to get another part shipped here.

I hit my personal rock-bottom three days after that, when word came around that there had been a foul-up in the shipping of the replacement fuel-flow sensor and that it was still sitting in a cargo warehouse at LAX. I went for a walk on the beach, looked out at the Strait of Magellan, and found myself idly wondering what people walking nearby might think if they saw a grown man cry, or perhaps throw a tantrum. I also ran across Science Team Lead Seelye Martin, who was out on the beach for the same reason. We exchanged approximately five dejected-sounding words and parted when neither of us could even work up a smile to help buck the other up.

In my 17+ years as an airborne scientist I’ve seen illnesses, scary traffic accidents, and especially, bad weather and broken airplanes adversely affect plenty of field programs. I just can’t recall so many diverse problems afflicting a single deployment as we have seen in this one. And I’ll admit it – the stress and frustration got to me. And I’m pretty sure I wasn’t alone, after seeing lots of long faces in project meetings and around the breakfast room at the hotel. Something else that makes this difficult to take is the inevitable comparison to our remarkable success here in 2009, when we racked up an incredible 21 long-distance science flights. We all went home after that feeling like conquering heroes, even though we knew we’d been lucky with favorable weather and a smoothly-running airplane.

But then, things began to look up. First, word came down that the long-delayed part was on a plane, on its way south out of LAX. We’d have it Thursday evening and could fly Friday. Then, our meteorological analysis showed unmistakable signs that the weather pattern that had bedeviled us for weeks was changing! Pine Island Bay and its surroundings were finally opening up! This was just in time for the part to arrive, and for us to knock out 2-3 flights in quick succession to finish up before we’re due to pack up and be home in time for Thanksgiving.

As it turns out, the fun wasn’t quite over yet. The weather forecasts held up beautifully, but another minor foul-up with customs paperwork delayed the part until the flight due to arrive at 3 am Friday morning. Worse, when it got here it immediately got locked up in another cargo warehouse which refused to open until 9 am Friday, despite the fervent nocturnal pleadings of our maintenance guys waiting nearby. With a few hours needed to make the repair, we decided to delay our takeoff to 3 pm, making for a very long day for everybody but meaning that we’d maximize our chances for a 3-flight run to finish up the project. During the morning while our crew was making the (rather involved) repair out on the open ramp, the nastiest local weather we’ve seen since our arrival blew through, with howling 30-40 knot winds, rain and blowing snow, making their time-pressured work even more difficult and uncomfortable, and making the rest of us fret about cross-winds, snow accumulation on the plane and all the other problems such a squall can create. But by the time they finished the repair, the sun was back out and we were go to launch! We flew a 100% successful evening mission in perfect weather conditions over the Thwaites and Pine Island Glacier basins yesterday, after the nail-biting drama of the overnight and morning, and landed around 2 am.

That was yesterday. As I write this account, it is now Saturday and we are again over Pine Island Glacier enjoying ideal weather. Most of us only had time to sleep 4-5 hours after the late-night landing yesterday and today’s noon takeoff, and there are lots of hollow eyes as well as a styrofoam menagerie of coffee cups strewn about the cabin. Nevertheless this is now a happy and fiercely determined team. We are now engaged in a full-bore, all-out sprint to the finish line, which we define as our departure to the north, and eventually home, around mid-day Monday. Today is flight #10 and we have now hit all of our high-priority science targets at least once.

We also have a fighting chance at one last science flight during the day tomorrow, Sunday. To do that requires one last spasm of exertion from the entire team – flight crew, maintenance crew, instrument engineers, scientists and support folks, in order to get the flight done early enough to get back to Punta, pack the plane and load up in time to make it north to Santiago on Monday, Palmdale on Tuesday, and to our respective homes hopefully by Wednesday night. Everybody here is fired up to do it, but par for the course, there is a problem. The workers who pump fuel into airplanes at the Punta Arenas airport, including ours, are threatening a labor action – a strike.

Media Day in Chile

From: Kathryn Hansen, NASA’s Earth Science News Team, NASA’s Goddard Space Flight Center

Video conference between IceBridge scientists in Punta Arenas, Chile, and reporters in Santiago. Credit: NASA/Sarah DeWitt

PUNTA ARENAS, Chile — In a perfect world, IceBridge researchers would make science flights over Antarctica almost every day and return home with a check next to every high-priority science flight. The 2009 campaign — the first year IceBridge made flights over Antarctica — was just about perfect. But that’s a rarity in Antarctic research where whether and unanticipated aircraft maintenance can ground flights.

During days on the ground, however, researchers keep busy. On Monday, Nov. 15, IceBridge scientists gathered at Universidad de Magallanes in Punta Arenas, Chile, to answer questions from local reporters and from reporters in Santiago via live video feed (video below).

Video credit: NASA/Michelle Williams

Missed it? Get a replay of the teleconference until Nov. 29 by calling:

Phone: Tfree:800-469-6597


Rollercoaster of Opportunity

From Kathryn Hansen, NASA’s Earth Science News Team, Goddard Space Flight Center

Nov. 13, 2010

John Sonntag (left), of NASA’s Wallops Flight Facility/URS, and Michael Studinger (right), of NASA’s Goddard Space Flight Center/UMBC, evaluate the Peninsula mission on the fly. Credit: NASA/Kathryn Hansen

PUNTA ARENAS, Chile — Friday evening, IceBridge teams gathered in the hotel conference room to discuss logistics for upcoming flights. First up: weather. The audience watched the animated WRF model, a tool used for flight planning because it tells you what the weather will be like in the next 6-12 hours. On this particular morning, the model showed system after system lined up to pummel Antarctica. “Are we sure this isn’t the WTF model?” a scientists inquired.

Saturday morning, scientist and flight planner John Sonntag arrived at the airport offices with the flight decision. Weather conditions weren’t perfect, but were the best the Antarctic Peninsula had seen in a month. Given that it had been a few days since the last flight and the forecast looked to only worsen in the days ahead, mission planners decided to take the opportunity to fly under the cloud ceiling. The model predicted clear skies below 10,000 feet. “I hope they’re right,” Sonntag said.

The flight planners quickly worked up a modified version of the “Pen 23” flight plan and at 9:23 we took off for the Peninsula.

The DC-8 approaches the Antarctic Peninsula. Credit: NASA/Kathryn Hansen

We flew the planned route backward, hitting northern cloud-free regions first. Heading south, we followed the eastern side the “spine” — the crest of a mountain range that extends down the middle of the Peninsula. Unfortunately for stomachs, the spine influences weather patterns and the east side also happened to be the windy, turbulent side. The DC-8 may need to restock the little white bags!

Stomachs also suffered from the dramatic changes in altitude necessary to collect data. The measurements require a relatively consistent altitude, which can be tricky when accessing a glacier behind a rock cliff. But the pilots deftly handled the 7,000-foot-roller coaster flight line to collect data over targets also surveyed during the 2009 campaign.

Glaciers meander through the rocky terrain of the Antarctic Peninsula (right). Credit: NASA/Kathryn Hansen

Targets flown: Hektoria, Drygalski, Crane, Flask and Leppard. Each of these glaciers drain into the Larsen A and B ice shelves which broke apart in 1995 and 2002, respectively. Attlee, Hermes, Lurabee and Clifford. Each of these glaciers drains into Larsen C, which is still intact.

So what? Like a cork in a bottle, ice sheets can plug the neck of a glacier. Remove that ice shelf and the glacier more freely dumps ice into the ocean. Scientists want to keep an eye on how these glaciers continue to respond years and decades after the loss of the shelves. Crane, for example, which feeds into the remnant of Larsen B, shows little sign of slowing down.

Cruising further south, however, we encountered too many clouds so we cut across to the west side of the spine to check out the Fleming Ice Shelf. Clouds there also proved too dense, however, so we turned north back to Punta Arenas. At 8.4 hours, the modified Pen 23 became the shortest flight of the campaign — to the relief of many yellow-faced passengers.

Finishing the Arc

From Sarah DeWitt, NASA’s Goddard Space Flight Center

Nov. 10, 2010 – South Pole Flight #2

After two and a half days of waiting for a replacement part to be delivered from the United States to Punta Arenas, the Operation IceBridge team is back in the air again. A new landing gear latch was hand-delivered on Tuesday afternoon at 2:20 PM. At the daily 6:00 PM science meeting, the ground crew informed us that the latch had been installed and was ready for flight. There was a hearty round of applause and a smile on everyone’s face.

Based on the weather prediction for Wednesday, the team identified two possible flight paths: a pass over the Crosson Ice Shelf or an arc over the South Pole. Models showed a low-pressure system off of the Antarctic Peninsula, and relatively clearer skies over the pole. After a second weather report in the morning, it was decided that we would do the South Pole arc – the LVIS 86b flight line – a continuation of the 2009 LVIS 86 flight line. 

The latest weather model data. Credit: John Sonntag, NASA WFF/URS.

IceBridge project scientist, Michael Studinger (NASA GSFC/UMBC), contacted the station manager at the South Pole to let him know our approximate overflight time. Apparently for folks who have been stationed at the South Pole for weeks or months during winter, this is an exciting event! The only question is, will the skies be cloud-free so we can see the station and they can see us?

8:30 AM – Today is my first flight on the NASA DC-8, so after the pre-flight briefing I made my way up to the cockpit for a front row seat. Seated behind the pilot and beside the flight engineer I buckled up and donned my headset. 

The NASA DC-8 flight crew prepares for take-off. Credit: Sarah DeWitt, NASA GSFC.

9:20 AM – Take-off! It’s a beautiful day in Punta Arenas, and the view from the cockpit is spectacular. As we head straight south I can see Route 9, the highway that hugs the coast as you head south from town to Fuerte Bulnes and San Juan. The mountains to my left are jagged and absolutely smothered in snow. The tall one looks like the Matterhorn.

9:45 AM – Today’s flight navigator is Rick Auld, an Air Force rated navigator onboard the DC-8 through the NASA Alliance Agreement with Edwards Air Force Base. He delivers a map of the South Pole arc we will fly today. The pilots explain to me that we’ll fly through enough time zones to go through Wednesday, Thursday and back again. 

The DC-8 pilots point out the narrow Antarctic time zones on the navigation map. Credit: Sarah DeWitt, NASA GSFC.

10:47 AM – Rick informs me we are about 160 miles due west of Adelaide Island. We are high above the clouds – a blanket of white in all directions.

10:50 AM – Just passed the Antarctic Circle, and we’ll begin our climb to 35,000 feet. It could be my imagination, but the highest layer of clouds look to be thinning a bit.

10:58 AM – Mission manager Frank Cutler, NASA DFRC, announces that we’re approaching the Antarctic continent, and asks the science instrument teams to check-in and declare readiness. The air is getting a bit bumpier now – the high clouds are back.

11:03 AM – Gap in the clouds ahead! The LVIS science team will use this opportunity to do some of their instrument maneuvers. Meanwhile I am catching my first ever glimpse of Antarctic ice. 

Shane Wake and Bryan Blair – LVIS engineer and principal investigator at NASA GSFC – take a look at the LVIS instrument read-out in their station near the rear of the aircraft. Credit: Sarah DeWitt, NASA GSFC.

11:20 AM – Michael informs me that we’re currently flying over the Wilkins ice shelf – or remnants of it. It broke up just a few years ago, so many very large icebergs are left floating in the sea. Image: Remnants of the Wilkins ice shelf from the window of the NASA DC-8. Credit: Sarah DeWitt, NASA GSFC.

11:32 AM – Thick cloud cover again. Time for lunch.

12:05 PM – Bryan shows me the ICESat data points we’ll be flying over today. Our path starts with a very high-terrain area over the Transantarctic Mountains and then levels out towards the end. We hope to see the mountains over top of the clouds. Some of the peaks rise to 10,000 feet, so it’s certainly possible. The flight today will enable LVIS to record a wide swath of data covering nearly every single orbit that the ICESat satellite made. Because of its polar orbit, millions of ICESat data points are clustered around the pole. During ICESat’s 7-year lifetime, its laser instruments were turned off and back on again from time to time, so there are slight differences throughout the dataset. LVIS data will provide a statistically powerful tool to calibrate the ICESat data.

12:15 PM – Rick tells me we’re 736 miles from the South Pole. Of course, we’re not flying a straight line, so it will take longer than that before we reach the pole. We’ll actually be flying an arc around the pole at 240 miles distance before crossing over the South Pole station. Clouds are still pretty heavy. We’re approaching -80 degrees latitude. 

Screen shot of Falcon View navigation map showing the flight path arc around the South Pole at a distance of 240 miles. Credit: Rick Auld, United States Air Force.

1:20 PM – We’ve just begun our arc around the pole. A layer of very smooth flat clouds blankets everything, but a few Transantarctic peaks appear in the distance. The clouds have cleared for a moment and I can see the subtle ridges that appear on the surface of the Antarctic ice. It is absolutely desolate – no signs of movement other than the clouds and the wind-blown textures atop the ice.

1:50 PM – The view is much clearer now – a stroke of good luck, since we’re passing over one of the world’s most spectacular mountain ranges. Just flew over some beautiful jagged peaks and glaciers. 

View of a Transantarctic mountain glacier from the DC-8. Credit: Sarah DeWitt, NASA GSFC

2:10 PM – We’re rounding the bend away from the mountains and onto the Antarctic plateau. We’ve passed the halfway point of our arc, and we’ve also entered the Eastern hemisphere. Apparently it’s now 4 AM on Thursday.

2:53 PM – We’ve gone half way around the world in 126 minutes. Our LVIS 86 arc is complete and now we’re heading up to 39,000 feet and flying straight towards the pole. We’re also heading straight into the sun! I’m glad I have my sunglasses.

3:10 PM – DC-8 co-pilot Dick Ewers (NASA DFRC) is talking to the South Pole on radio headset. They are ready for us to fly over. The sky is clear so they should be able to see us just fine. This has got to be one of the most amazing things I’ve experienced. Listening to the conversation between our NASA crew and the scientists at the South Pole station makes me feel very proud to be a member of this team.

3:28 PM – We are flying directly over the South Pole. The place to see it is from the cockpit window, or the nadir view camera mounted inside the bottom of aircraft. I’m squeezed in between the pilot’s seats to catch a few snapshots. Meanwhile, the compasses are spinning like crazy. 

View of the South Pole Station from the DC-8 cockpit. Credit: Sarah DeWitt, NASA GSFC

3:50 PM – Now we’re heading on a straight line from the South Pole, following the exact track we did a few days ago, just before I arrived in Punta Arenas, in order to mimic the ATM swath and compare datasets.

The smooth edge of floating sea ice off the western coast of the Antarctic Peninsula (right). Credit: Sarah DeWitt, NASA GSFC

6:25 PM – The last few hours have been extremely relaxed and quiet. Seems like everyone is conserving energy. I’m doing some yoga stretches. We should be back in Punta Arenas in a few hours. Meanwhile, the team has started looking at flight options for tomorrow. If the weather holds, we’ll do a low elevation zig-zag pattern over parts of the peninsula.

6:35 PM – We’re crossing over the edge of the Antarctic sea ice. It’s remarkable how smooth the edge is. A few lonely icebergs are floating nearby. I can see their blue color below the surface. The sun is casting a gorgeous pink-orange glow over the ocean surface.

6:40 PM – And just when I declared that everything was relaxed and quiet, the crew performed a couple of pitch and roll maneuvers. Wow!

9:25 PM – Landed after 12 hours of flying. The sunset over the Andes was worth the wait. Tomorrow I hope to fly again.